
NUT

Introduction to Network UPS Tools

Configuration Examples

based on

Network UPS Tools Project 2.7.4
Russell Kroll, Arnaud Quette, Arjen de Korte, Charles Lepple and many others

with additional text and editing

Roger Price

Version 2019-07-218, with corrections up to 2019-07-21

i

This introduction is based on the Network UPS Tools (NUT) User Manual, the man pages and
the file config-notes.txt which do not carry explicit copyright notices, but which are part of the
NUT package which is GPL licensed.

Copyright c© Russell Kroll, Arnaud Quette, Arjen de Korte, Charles Lepple and others

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

http://www.fsf.org/licenses/old-licenses/gpl-2.0.html

The User Manual provides the following notice:

B. Acknowledgments / Contributions
This project is the result of years of work by many individuals and companies.
Many people have written or tweaked the software; the drivers, clients, server and documen-
tation have all received valuable attention from numerous sources.
Many of them are listed within the source code, AUTHORS file, release notes, and mailing
list archives, but some prefer to be anonymous. This software would not be possible without
their help.

Additional material:
Copyright c© Roger Price 2017, 2018
Distributed under the GPLv3. http://www.fsf.org/licenses/gpl.html

Page dimensions
Dimension Design (A5) Actual pt Actual mm

\hoffset -29.4mm -83.65106pt -29.39963 mm
\voffset -29.4mm -83.65106pt -29.39963 mm
\pdfpageheight 240mm 682.86613pt 239.99718 mm
\pdfpagewidth 197.5mm 561.94193pt 197.49768 mm
\textheight 210mm 597.50787pt 209.99753 mm
\textwidth 177.5mm 505.03642pt 177.49791 mm
\linewidth 505.03642pt 177.49791 mm
\columnsep 15mm 42.67912pt 14.99982 mm
\LinePrinterwidth 145.5mm 413.9876pt 145.49829 mm

ii

http://www.fsf.org/licenses/old-licenses/gpl-2.0.html
http://www.fsf.org/licenses/gpl.html

Changes:

• 2017-06-27 First edition

• 2017-07-02 Added subsection “Configuration file formats”. Added lowbatt to ups.conf.
Added subsection “Driver daemon” to introduction. Added Ubuntu specific addresses.

• 2017-07-24 Added discussion of selective UPS shutdown to chapter 9.

• 2017-08-10 Added appendix C, “Using notify-send”.

• 2018-01-10 Rewrote appendix C, “Using notify-send”. Rewrote appendix A “Starting NUT”.
Added chapter 6.6 “For paranöıd sysadmins”.

• 2018-08-22 In chapter 3.1 added reference to issue #597 for multiple UPS units.

• 2019-07-21 Added chapter 9 “Encrypted connections”.

• 2019-07-21

iii

Contents

1 Introduction, and Welcome to NUT 1
1.1 What is NUT? . 2
1.2 Why this introduction? . 2
1.3 Basic components of NUT . 2

1.3.1 Driver daemon . 2
1.3.2 Daemon upsd . 3
1.3.3 Daemon upsmon . 4
1.3.4 Utility program upsc . 5

1.4 Configuration file formats . 5
1.4.1 Line spanning . 7

1.5 Mailing list: nut-users . 7

2 Simple server with no local users 9
2.1 Configuration file ups.conf, first attempt . 9
2.2 Configuration file upsd.conf . 10
2.3 Configuration file upsd.users . 10
2.4 Configuration file upsmon.conf for a simple server 10
2.5 The delayed UPS shutdown . 13
2.6 The shutdown story for a simple server . 14
2.7 Configuration file ups.conf for a simple server, improved 15
2.8 The shutdown story with quick power return . 16
2.9 Utility program upscmd . 16
2.10 Utility program upsrw . 17

3 Server with multiple power supplies 18
3.1 Configuration file ups.conf for multiple power supplies 18
3.2 Configuration file upsmon.conf for multiple power supplies 19
3.3 Shutdown conditions for multiple power supplies . 20

4 Workstation with local users 23
4.1 Configuration file upsmon.conf for a workstation 24
4.2 Configuration file upssched.conf for a workstation 26
4.3 Configuration script upssched-cmd for a workstation 27
4.4 The shutdown story for a workstation . 29

5 Workstations share a UPS 30
5.1 Configuration file upsmon.conf for a slave . 31
5.2 Configuration file upssched.conf for a slave . 33
5.3 Configuration script upssched-cmd for a slave . 34
5.4 Magic: How does the master shut down the slaves? 35

iv

6 Workstation with heartbeat 36
6.1 Configuration file ups.conf for workstation with heartbeat 37
6.2 Configuration file heartbeat.dev for workstation 38
6.3 Configuration file upsmon.conf for workstation with heartbeat 38
6.4 Configuration file upssched.conf for workstation with heartbeat 39
6.5 Script upssched-cmd for workstation with heartbeat 39
6.6 For paranöıd sysadmins . 41

7 Workstation with timed shutdown 42
7.1 Configuration file ups.conf for workstation with timed shutdown 43
7.2 Configuration file heartbeat.dev for workstation with timed shutdown 44
7.3 Configuration file upsd.conf with timed shutdown 44
7.4 Configuration file upsd.users with timed shutdown 45
7.5 Configuration file upsmon.conf with timed shutdown 45
7.6 Configuration file upssched.conf with timed shutdown 48
7.7 Script upssched-cmd for workstation with timed shutdown 50

7.7.1 The timed shutdown . 51
7.8 The timed shutdown story . 52

8 Workstation with additional equipment 54
8.1 Configuration files nut.conf . 55
8.2 Configuration files ups.conf and heartbeat.dev 56
8.3 Configuration files upsd.conf . 57
8.4 Configuration files upsd.users . 57
8.5 Configuration file upsmon.conf . 58
8.6 Configuration file upssched.conf for mgmt . 61

8.6.1 UPS-3 on gold . 61
8.6.2 UPS-2 on gold . 62
8.6.3 UPS-1 on mgmt . 63
8.6.4 heartbeat on mgmt . 63

8.7 User script upssched-cmd . 63
8.8 The shutdown story . 66

9 Encrypted connections 67
9.1 Waiting for NUT release 2.7.5 . 67
9.2 Warning for Debian users . 67
9.3 Introduction . 68
9.4 Sniffing port 3493 . 70
9.5 Creating the SSL keys with OpenSSL . 71

9.5.1 Create unique name for certificate using OpenSSL 72
9.6 Install NUT server keys on gold . 72

v

9.7 Install NUT management client keys on mgmt . 73
9.8 Testing the TLS setup . 74
9.9 What can Debian users do? . 76

9.9.1 Debian: Create NSS database on gold . 76
9.9.2 Debian: Add OpenSSL keys and certificates to NSS database on gold 77
9.9.3 Debian: Check and display NSS database on gold 78
9.9.4 Debian: Create NSS database on mgmt . 78
9.9.5 Debian: Testing the NSS setup . 78

10 Acknowledgments 80

11 Errors, omissions, obscurities, confusions, typpos... 80

A Starting NUT 81

B Stopping NUT 83
B.1 Delayed UPS shutdown with NUT script . 83
B.2 Delayed UPS shutdown with a systemd service unit 84

C Using notify-send 85
C.1 What’s wrong with notify-send? . 85
C.2 Give user “upsd” (“nut”) the right to act as any user 86
C.3 Search for and notify logged in users . 87
C.4 Testing the notify-send-all setup . 87
C.5 References for notify-send . 88

List of Figures

1 Overview of NUT. 1
2 Symbols used in ups.status maintained by upsd. 3
3 Wall power has failed. 4
4 Symbols used to represent NOTIFY events maintained by upsmon. 4
5 Server with no local users. 9
6 Configuration file ups.conf, first attempt. 9
7 Configuration file upsd.conf. 10
8 Configuration file upsd.users for a simple server. 10
9 Configuration file upsmon.conf for a simple server, part 1 of 5. 11
10 Configuration file upsmon.conf for a simple server, part 2 of 5. 11
11 Configuration file upsmon.conf for a simple server, part 3 of 5. 11
12 Configuration file upsmon.conf for a simple server, part 4 of 5. 12
13 Flags declaring what upsmon is to do for NOTIFY events. 12

vi

14 Configuration file upsmon.conf for a simple server, part 5 of 5. 12
15 Delayed UPS shutdown. 13
16 NUT provided script for delayed UPS shutdown. 13
17 Configuration file ups.conf, improved. 15
18 Server with multiple power supplies. 18
19 File ups.conf for multiple power supplies. 19
20 Configuration file upsmon.conf for multiple power supplies, part 1 of 5. 19
21 Experiment to show effect of lost UPS. Part 1, . 20
22 Experiment to show effect of lost UPS. Part 2, . 21
23 Workstation with local users. 23
24 Configuration file upsmon.conf for a workstation, part 1 of 5. 24
25 Configuration file upsmon.conf for a workstation, part 2 of 5. 24
26 Configuration file upsmon.conf for a workstation, part 3 of 5. 25
27 Configuration file upsmon.conf for a workstation, part 4 of 5. 25
28 Configuration file upsmon.conf for a workstation, part 5 of 5. 25
29 Configuration file upssched.conf for a workstation. 26
30 Configuration script upssched-cmd for a workstation. 27
31 “Slave” workstations take power from same UPS as “master”. 30
32 Configuration file upsmon.conf for a slave, part 1 of 5. 31
33 Configuration file upsmon.conf for a slave, part 2 of 5. 31
34 Configuration file upsmon.conf for a slave, part 3 of 5. 32
35 Configuration file upsmon.conf for a slave, part 4 of 5. 32
36 Configuration file upsmon.conf for a slave, part 5 of 5. 33
37 Configuration file upssched.conf for a slave. 33
38 Configuration script upssched-cmd for a slave. 34
39 Workstation with heartbeat. 36
40 Configuration file ups.conf for workstation with heartbeat. 37
41 Configuration file heartbeat.dev for workstation. 38
42 Configuration file upsmon.conf for a workstation with heartbeat. 38
43 Configuration file upssched.conf for a workstation with heartbeat. 39
44 Configuration script upssched-cmd including heartbeat. 40
45 Heartbeat watcher. 41
46 Workstation with timed shutdown. 42
47 Configuration file ups.conf for workstation with timed shutdown. 43
48 Configuration file heartbeat.dev for workstation with timed shutdown. 44
49 Configuration file upsd.conf or workstation with timed shutdown. 44
50 Configuration file upsd.users for a simple server. 45
51 Configuration file upsmon.conf with timed shutdown, part 1 of 5. 45
52 Configuration file upsmon.conf with timed shutdown, part 2 of 5. 46
53 Configuration file upsmon.conf with timed shutdown, part 3 of 5. 47
54 Configuration file upsmon.conf with timed shutdown, part 4 of 5. 47

vii

55 Configuration file upsmon.conf with timed shutdown, part 5 of 5. 48
56 Configuration file upssched.conf with timed shutdown. 48
57 Configuration script upssched-cmd for timed shutdown, 1 of 2. 50
58 Configuration script upssched-cmd for timed shutdown, 2 of 2. 51
59 Workstation with additional equipment. 54
60 File nut.conf for gold . 55

61 Files nut.conf for mgmt . 55

62 File ups.conf for gold . 56

63 File ups.conf for mgmt . 56

64 heartbeat.dev for mgmt . 56

65 File upsd.conf for gold . 57

66 File upsd.conf for mgmt . 57

67 File upsd.users for gold . 57

68 File upsd.users for mgmt . 57

69 Configuration file upsmon.conf for mgmt , part 1 of 5. 58

70 Configuration file upsmon.conf for mgmt , part 2 of 5. 59

71 Configuration file upsmon.conf for mgmt , part 3 of 5. 60

72 Configuration file upsmon.conf for mgmt , part 4 of 5. 60

73 Configuration file upsmon.conf for mgmt , part 5 of 5. 61

74 Configuration file upssched.conf for mgmt . 62

75 User script upssched-cmd on mgmt , 1 of 5. 63

76 User script upssched-cmd on mgmt , 2 of 5. 64

77 User script upssched-cmd on mgmt , 3 of 5. 64

78 User script upssched-cmd on mgmt , 4 of 5. 65

79 User script upssched-cmd on mgmt , 5 of 5. 65
80 Encrypted connection to remote server using OpenSSL. 67
81 tcpdump of systemctl start nut-monitor.service without encryption. 70
82 Call openssl req to create the self-signed certificate. 71
83 The files produced by openssl req. 72
84 Create unique name for certificate file. 72
85 The combined file required by upsd on gold . 72

86 CERTFILE declaration to be added to upsd.conf on gold 73

87 Copy certificate to mgmt and rename file. 73

88 Configuration file upsmon.conf for mgmt , with CERTFILE. 74

89 Restarting upsd on gold with SSL/TLS enabled. 74

90 Restarting upsmon on mgmt with SSL/TLS enabled. 75
91 Encrypted connection to remote server using NSS. 76

viii

92 Creating the NSS databases on gold . 77

93 Import private key to NSS database on gold . 77

94 Import certificate (public key) to NSS database on gold 78

95 NSS CERTPATH declaration for upsd.conf on gold 78

96 Check and display certificate and private key on gold 79

97 NSS CERTHOST declaration for upsmon.conf on mgmt 79
98 Configuration file nut.conf. 81
99 Daemons used by NUT. 81
100 UPS shutdown script nutshutdown. 83
101 UPS shutdown script nutshutdown for 2 of 3 UPS’s. 83
102 UPS shutdown service unit nut-delayed-ups-shutdown.service. 84
103 Modifications to file /etc/sudoers . 86
104 Bash script notify-send-all . 87

ix

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

1 Introduction, and Welcome to NUT

This document has been marked up in LATEX 2ε and rendered as PDF file ConfigExamples.A5.pdf
in a portrait A5 format, 88 pages with one page per sheet. Your PDF viewer may be able to place
two pages side by side on your big monitor.

The document is not only linear reading, but also hypertext. All chapters in the table of
contents, all chapter references, all line number references throughout the document, all man page
names and URL’s are clickable. External links may be outlined in cyan, for example man ups.conf.
If your mouse hovers over a clickable surface, your browser/PDF reader may tell you where the link
leads.

You are of course free to read as much or as little as you wish of this document, but the suggested
reading order is:

1. Introduction

2. Simple server with no local users

3. Multiple power supplies

4. Workstation with local users

5. Workstations share a UPS

6. Workstation with heartbeat

timed shutdown

7. Workstation with

8. Workstation with additional equipment

9. Encrypted connections
i
n
t
r
o
.
f
i
g

port

3493

upsd

upsc
UPS−1

upsmon
[ONLINE]

ups.status: [OL]

Driver
upsdrvctl

o
v
e
r
v
i
e
w
−
O
L
.
f
i
g

Figure 1: Overview of NUT.

Page 1 of 88

http://rogerprice.org/NUT/ConfigExamples.A5.pdf
http://networkupstools.org/docs/man/ups.conf.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

1.1 What is NUT?

The acronym NUT stands for “Network UPS Tools”. It is a collection of GPL licensed software
written in K&R style C for managing power devices, mainly UPS units. It supports a wide range
of UPS units and can handle one or multiple UPS’s of different models and manufacturers simul-
taneously in home, small business and large professional installations. NUT replaces the software
which came with your UPS.

The NUT software is included as a package in most major distributions of Linux, and the source
code is available in a tarball for the others.

The NUT software includes complete technical documentation in the form of PDF manuals,
configuration notes such as file config-notes.txt, man pages, a web site http://networkupstools
.org and detailed comments in the sample configuration files supplied with the project. There is
also a FAQ on the project web site, and a “ups-user” mailing list1 in which users may ask questions.

1.2 Why this introduction?

To make full use of your UPS you will need to configure the NUT software used to manage UPS
units. The technically complete documentation does not provide many examples; this introduction
is intended to fill the gap by providing fully worked examples for some frequently met configurations.
It is aimed at experienced Unix/Linux system administrators who are new to NUT. Pick the
configuration which corresponds most closely to your installation, get it working, and then adapt
it to your needs. If you have questions for the mailing list it is much easier to explain what you are
trying to do by referring to a well known example.

1.3 Basic components of NUT

Figure 1 shows the basic components of the NUT software.

1.3.1 Driver daemon

The driver is a daemon which talks to the UPS hardware and is aware of the state of the UPS. One
of the strengths of the NUT project is that it provides drivers for a wide range of UPS units from a
range of manufacturers. NUT groups the UPS’s into families with similar interfaces, and supports
the families with drivers which match the manufacturer’s interface. See the hardware compatibility
list for a looong list of the available drivers.

The drivers share a command interface, upsdrvctl, which makes it possible to send a command
to the UPS without having to know the details of the UPS protocol. We will see this command in
action in chapter 2.5 when we need to shut down the UPS after a system shutdown.

1See mailing list administration at https://lists.alioth.debian.org/mailman/listinfo/nut-upsuser

Page 2 of 88

https://github.com/networkupstools/nut/blob/master/docs/config-notes.txt
http://networkupstools.org
http://networkupstools.org
http://networkupstools.org/docs/FAQ.html
http://www.networkupstools.org/stable-hcl.html
http://www.networkupstools.org/stable-hcl.html
https://lists.alioth.debian.org/mailman/listinfo/nut-upsuser

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

1.3.2 Daemon upsd

upsd is a daemon which runs permanently in the box to which one or more UPS’s are attached. It
scans the UPS’s through the UPS-specific driver2 and maintains an abstracted image of the UPS
in memory3.

[ol] UPS unit is receiving power from the wall.
[ob] UPS unit is not receiving power from the wall and is using

its own battery to power the protected device.
[lb] The battery charge is below a critical level specified by

the value battery.charge.low.
[rb] UPS battery needs replacing.
[chrg] The UPS battery is currently being charged.
[dischrg] The UPS battery is not being charged and is discharging.
[alarm] An alarm situation has been detected in the UPS unit.
[over] The UPS unit is overloaded.
[trim] The UPS voltage trimming is in operation.
[boost] The UPS voltage boosting is in operation.
[bypass] The UPS unit is in bypass mode.
[off] The UPS unit is off.
[cal] The UPS unit is being calibrated.
[test] UPS test in progress.
[fsd] Tell slave upsmon instances that final shutdown is under-

way.

Figure 2: Symbols used in ups.status maintained by upsd.

The various parts of the abstracted image have standardized names, and a key part is ups

.status which gives the current status of the UPS unit. The current status is a string of symbols.
The principal symbols are shown in figure 2, but if you write software which processes upsd symbols,
expect to find other values in exceptional UPS specific cases.

Some typical status values are [ol] which means that the UPS unit is taking power from the
wall, and [ob lb] which means that wall power has failed, the UPS is supplying power from it’s
battery, and that battery is almost exhausted.

Daemon upsd listens on port 3493 for requests from its clients, which may be local or remote.
It is amusing to test this using a tool such as nc or netcat and a UPS called UPS-1.

1 rprice@maria:~> REQUEST="GET VAR UPS-1 battery.charge"

2 rprice@maria:~> echo $REQUEST | nc localhost 3493

3 VAR UPS-1 battery.charge "100"

2See the Hardware Compatibility list and required drivers at http://www.networkupstools.org/stable-hcl.html
3This image may be viewed at any time with the command upsc name-of-UPS

Page 3 of 88

http://www.networkupstools.org/stable-hcl.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

Chapter 1.3.4 will show that this is best done with NUT utility program upsc.
Later chapters will discuss the configuration files ups.conf, upsd.conf and upsd.users with

the specific examples. For gory details, read man upsd, man upsd.conf, man upsd.users and man

ups.conf.

1.3.3 Daemon upsmon

upsd
3493beep

beep

beep

UPS−1

upsmon

[ONBATT]

NOTIFY event:

ups.status: [OB]

upsdrvctl
+ driver

overview−OB.fig

Figure 3: Wall power has failed.

upsmon is an example of a client of upsd. It runs permanently as a daemon in a local or remote
box, polling the status changes of the UPS unit. It is able to react to changes in the UPS state for
example by emitting warning messages, or shutting down the box. The actions are specified in the
configuration file upsmon.conf which will be discussed in specific examples.

NOTIFY events based on status changes
[online] Status change [ob]→[ol]. The UPS is back on line.
[onbatt] Status change [ol]→[ob]. The UPS is now on battery.
[lowbatt] Status [lb] has appeared. The driver says the UPS battery

is low.
[replbatt] The UPS needs to have its battery replaced. Not all UPS’s

can indicate this.

NOTIFY events based on upsmon activity
[fsd] No status change. The master has commanded the UPS into

the “forced shutdown” mode.
[shutdown] The local system is being shut down.
[commok] Communication with the UPS has been established.
[commbad] Communication with the UPS was just lost.
[nocomm] The UPS can’t be contacted for monitoring.

NOTIFY event based on NUT process error
[noparent] upsmon parent died - shutdown impossible.

Figure 4: Symbols used to represent NOTIFY events maintained by upsmon.

As the state of a UPS evolves, the key status changes, called “NOTIFY events”, are identified

Page 4 of 88

http://networkupstools.org/docs/man/upsd.html
http://networkupstools.org/docs/man/upsd.conf.html
http://networkupstools.org/docs/man/upsd.users.html
http://networkupstools.org/docs/man/ups.conf.html
http://networkupstools.org/docs/man/ups.conf.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

with the symbols shown in figure 4. The NOTIFY event symbol is also known as a “notifytype” in
NUT.

Figure 3 shows what happens when wall power fails. Daemon upsd has polled the UPS, and has
discovered that the UPS is supplying power from it’s battery. The ups.status changes to [ob].
Daemon upsmon has polled upsd, has discovered the status change and has generated the NOTIFY
event [onbatt].

For the gory details, read man upsmon and man upsmon.conf.

1.3.4 Utility program upsc

The NUT project provides this simple utility program to talk to upsd and retrieve details of the
UPS’s. For example, “What UPS’s are attached to the local host?”

4 rprice@maria:~> upsc -L

5 UPS-1: Eaton Ellipse ASR 1500 USBS

6 heartbeat: Heart beat validation of NUT

Let’s ask for the upsd abstracted image of a UPS:

7 rprice@maria:~> upsc UPS-1

8 battery.charge: 100

9 battery.charge.low: 50

10 ...

11 driver.name: usbhid-ups

12 driver.parameter.offdelay: 30

13 driver.parameter.ondelay: 40

14 ...

15 ups.status: OL CHRG

Let’s ask, using Bash syntax, for a list of the drivers used by upsd:

16 rprice@maria:~> for u in $(upsc -l)

17 > do upsc $u driver.name

18 > done

19 usbhid-ups

20 dummy-ups

Man page man upsc provides further examples.

1.4 Configuration file formats

The components of NUT get their configuration from the following configuration files. The simpler
configurations do not use all these files.

• nut.conf Nut daemons to be started.

Page 5 of 88

http://networkupstools.org/docs/man/upsmon.html
http://networkupstools.org/docs/man/upsmon.conf.html
http://networkupstools.org/docs/man/upsc.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

• ups.conf Declare the UPS’s managed by upsd.

• heartbeat.dev Used only for heartbeat configurations.

• upsd.conf Access control to the upsd daemon.

• upsd.users Who has access to the upsd daemon.

• upsmon.conf upsmon daemon configuration.

• upssched.conf Only used for customised and timer-based setups.

• upssched-cmd A script used only for customised and timer-based setups.

• delayed UPS shutdown Choice of scripts for delayed UPS shutdown.

NUT parses all the configuration files with a common state machine, which means they all have
the following characteristics.

First, most of the programs use an uppercase word to declare a configuration directive. This
may be something like MONITOR, NOTIFYCMD, or ACCESS. Case matters here. “monitor” won’t be
recognized.

Next, the parser does not care about whitespace between words. If you like to indent things
with tabs or spaces, feel free to do so.

The keywords are often followed by values. If you need to set a value to something containing
spaces, it has to be contained within “quotes” to keep the parser from splitting the line, e.g.

21 SHUTDOWNCMD "/sbin/shutdown -h +0"

Without the quotes, the parser would only see the first word on the line. Let’s say you really
need to embed a quote within your directive for some reason. You can do that too.

22 NOTIFYCMD "/bin/notifyme -foo -bar \"hi there\" -baz"

In other words, \ can be used to escape the ".
When you need to put the \ character into your string, you just escape it.

23 NOTIFYCMD "/bin/notifyme c:\\dos\\style\\path"

The \ can be used to escape any character, but you only really need it for \, ", and # as they
have special meanings to the parser.

When using file names with space characters, you may end up having tricky things since you
need to write them inside "" which must be escaped:

24 NOTIFYCMD "\"c:\\path with space\\notifyme\""

is the comment character. Anything after an unescaped # is ignored, e.g.

25 identity = my#1ups

Page 6 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

will turn into identity = my, since the # stops the parsing. If you really need to have a # in
your configuration, then escape it.

26 identity = my\#1ups

Much better.
The = character should be used with care too. There should be only one “simple” = character in

a line: between the parameter name and its value. All other = characters should be either escaped
or within “quotes”. Remember that the # character in a password must be escaped:

27 password = 12=34#56 Incorrect
28 password = 12\=34\#56 Good
29 password = NUT=Awesome Incorrect
30 password = "NUT=Awesome" Good

1.4.1 Line spanning

You can put a backslash at the end of the line to join it to the next one. This creates one virtual
line that is composed of more than one physical line.

Also, if you leave the "" quote container open before a newline, it will keep scanning until it
reaches another one. If you see bizarre behavior in your configuration files, check for an unintentional
instance of quotes spanning multiple lines.

1.5 Mailing list: nut-users

The NUT project offers a mailing list to assist the users. The web page for list administration is
https://lists.alioth.debian.org/mailman/listinfo/nut-upsuser.

As always in mailing lists, you get better results if you remember Eric Raymond’s good ad-
vice. See “How To Ask Questions The Smart Way” at http://www.catb.org/esr/faqs/smart-
questions.html.

If you want to quote configuration files, please remove comments and blank lines. A command
such as grep ^[^#] upsmon.conf will do the job.

The NUT mailing lists accept HTML formatted e-mails, but it’s better to get into the habit of
sending only plain text, since you will meet mailing lists that send HTML to /dev/null.

Now that we have the basic ideas of NUT, we are ready to look at the first simple configuration.

Page 7 of 88

https://lists.alioth.debian.org/mailman/listinfo/nut-upsuser
http://www.catb.org/esr/faqs/smart-questions.html
http://www.catb.org/esr/faqs/smart-questions.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

Page 8 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

2 Simple server with no local users

This chapter extends the general ideas of chapter 1 to provide a fully worked example of a simple
configuration. This will in turn form the basis of future chapters.

port

3493

upsd

upsc

upsrw

upscom

UPS−1

upsmon
[ONLINE]

ups.status: [OL]

upsdrvctl
+ driver

s
e
r
v
e
r
.
f
i
g

Figure 5: Server with no local users.

Six configuration files specify the operation of NUT in the simple server.

1. The NUT startup configuration: nut.conf. Since this file is not strictly a part of NUT, and
is common to all configurations, it is discussed separately in appendix A.

2. The upsd UPS declarations: ups.conf, see chapter 2.1.

3. The upsd daemon access control; upsd.conf, see chapter 2.2.

4. The upsd daemon user declarations: upsd.users, see chapter 2.3.

5. The upsmon daemon configuration: upsmon.conf, see chapter 2.4.

6. The delayed UPS shutdown script. Since this file is common to all configurations, it is
discussed separately in appendix B.

2.1 Configuration file ups.conf, first attempt

31 # ups.conf, first attempt

32 [UPS-1]

33 driver = usbhid-ups

34 port = auto

35 desc = "Eaton ECO 1600"

Figure 6: Configuration file ups.conf,
first attempt.

This configuration file declares your UPS units.
The file described here will do the job, but we will
see after we have discussed the shutdown process,
that useful improvements are possible.

Line 32 begins a UPS-specific section, and
names the UPS unit that upsd will manage. The
following lines provide details for this UPS. There
will as many sections as there are UPS units. Make
sure this name matches the name in upsmon.conf

and in upssched-cmd, which we will meet in later chapters.
Line 33 specifies the driver that upsd will use. For the full list of drivers, see the Hardware

Compatibility list and the required drivers at http://www.networkupstools.org/stable-hcl.html.

Page 9 of 88

http://www.networkupstools.org/stable-hcl.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

Line 34 depends on the driver. For the usbhid-ups driver the value is always auto. For other
drivers, see the man page for that driver.

Line 35 provides a descriptive text for the UPS.

2.2 Configuration file upsd.conf

36 # upsd.conf

37 LISTEN 127.0.0.1 3493

38 LISTEN ::1 3493

Figure 7: Configuration file upsd.conf.

This configuration file declares on which ports the
upsd daemon will listen, and provides a basic ac-
cess control mechanism.

Line 37 declares that upsd is to listen on it’s
prefered port for traffic from the localhost. The IP
address specifies the interface on which the upsd

daemon will listen. The default 127.0.0.1 specifies the loopback interface. It is possible to replace
127.0.0.1 by 0.0.0.0 which says “listen for traffic from all sources” and use your firewall to filter
traffic to port 3493. For good security, his file should be accessible to the upsd process only.

If you do not have IPv6, remove or comment out line 38.

2.3 Configuration file upsd.users

39 # upsd.users

40 [upsmaster]

41 password = sekret

42 upsmon master

Figure 8: Configuration file upsd.users

for a simple server.

This configuration file declares who has write ac-
cess to the UPS. For good security, ensure that
only users upsd/nut and root can read and write
this file.

Line 40 declares the “user name” of the sys-
tem administrator who has write access to the
UPS’s managed by upsd. It is independent of
/etc/passwd. The upsmon client daemon will use

this name to poll and command the UPS’s. There may be several names with different levels of
access. For this example we only need one.

Line 41 provides the password. You may prefer something better than “sekret”.
Line 42 declares that this user is the upsmon daemon, and the required set of actions will be

set automatically. In this simple configuration daemon upsmon is a master and has authority to
shutdown the server. The alternative, “upsmon slave”, allows monitoring only, with no shutdown
authority.

The configuration file for upsmon must match these declarations for upsmon to operate correctly.
For lots of details, see man upsd.users.

2.4 Configuration file upsmon.conf for a simple server

This configuration file declares how upsmon is to handle NOTIFY events. For good security, ensure
that only users upsd/nut and root can read and write this file.

Page 10 of 88

http://networkupstools.org/docs/man/upsd.users.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

43 # upsmon.conf

44 MONITOR UPS-1@localhost 1 upsmaster sekret master

Figure 9: Configuration file upsmon.conf for a simple server, part 1 of 5.

On line 44

• The UPS name UPS-1 must correspond to that declared in ups.conf line 32.

• The “power value” 1 is the number of power supplies that this UPS feeds on this system.

• upsmaster is the “user” declared in upsd.users line 40.

• sekret is the password declared in upsd.users line 41.

• master means this system will shutdown last, allowing any slaves time to shutdown first.
Slave systems will be discussed in chapter 5. There are no slaves in this simple configuration.

45 SHUTDOWNCMD "/sbin/shutdown -h +0"

46 POWERDOWNFLAG /etc/killpower

Figure 10: Configuration file upsmon.conf for a simple server, part 2 of 5.

Line 45 declares the command that is to be used to shut down the server. A second instance of the
upsmon daemon running as root will execute this command. Multiple commands are possible, for
example SHUTDOWNCMD "logger -t upsmon.conf \"SHUTDOWNCMD calling /sbin/shutdown to

shut down system\" ; /sbin/shutdown -h +0" will also log the action of SHUTDOWNCMD. Note
that internal ” have to be escaped.

Line 46 declares a file created by upsmon when running in master mode when the UPS needs to
be powered off. It will be used in more complex configurations. See man upsmon.conf for details.

47 NOTIFYMSG ONLINE "UPS %s: On line power."

48 NOTIFYMSG ONBATT "UPS %s: On battery."

49 NOTIFYMSG LOWBATT "UPS %s: Battery is low."

50 NOTIFYMSG REPLBATT "UPS %s: Battery needs to be replaced."

51 NOTIFYMSG FSD "UPS %s: Forced shutdown in progress."

52 NOTIFYMSG SHUTDOWN "Auto logout and shutdown proceeding."

53 NOTIFYMSG COMMOK "UPS %s: Communications (re-)established."

54 NOTIFYMSG COMMBAD "UPS %s: Communications lost."

55 NOTIFYMSG NOCOMM "UPS %s: Not available."

56 NOTIFYMSG NOPARENT "upsmon parent dead, shutdown impossible."

Figure 11: Configuration file upsmon.conf for a simple server, part 3 of 5.

Lines 47-56 assign a text message to each NOTIFY event. Within each message, the marker %s
is replaced by the name of the UPS which has produced this event. upsmon passes this message to
program wall to notify the system administrator of the event. You can change the default messages

Page 11 of 88

http://networkupstools.org/docs/man/upsmon.conf.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

57 NOTIFYFLAG ONLINE SYSLOG+WALL

58 NOTIFYFLAG ONBATT SYSLOG+WALL

59 NOTIFYFLAG LOWBATT SYSLOG+WALL

60 NOTIFYFLAG REPLBATT SYSLOG+WALL

61 NOTIFYFLAG FSD SYSLOG+WALL

62 NOTIFYFLAG SHUTDOWN SYSLOG+WALL

63 NOTIFYFLAG COMMOK SYSLOG+WALL

64 NOTIFYFLAG COMMBAD SYSLOG+WALL

65 NOTIFYFLAG NOCOMM SYSLOG+WALL

66 NOTIFYFLAG NOPARENT SYSLOG+WALL

Figure 12: Configuration file upsmon.conf for a simple server, part 4 of 5.

to something else if you like. The format is NOTIFYMSG event "message" where %s is replaced
with the identifier of the UPS in question.

Lines 57-66 declare what is to be done at each NOTIFY event. The declarations, known as
“flags” are shown in table 13. You may specify one, two or three flags for each event, in the form
FLAG[+FLAG]*, however IGNORE must always be alone.

IGNORE Don’t do anything. Must be the only flag on the line.
SYSLOG Write the message in the system log.
WALL Use program wall to send message to terminal users. Note

that wall does not support accented letters or non-latin char-
acters.

EXEC (Not used for this simple server example).

Figure 13: Flags declaring what upsmon is to do for NOTIFY events.

Note that if you have multiple UPS’s, the same actions are to be performed for a given NOTIFY
event for all the UPS’s. We will see later that this is not good news.

67 RBWARNTIME 43200

68 NOCOMMWARNTIME 300

69 FINALDELAY 5

Figure 14: Configuration file upsmon.conf for a simple server, part 5 of 5.

When a UPS says that it needs to have its battery replaced, upsmon will generate a [replbatt]
NOTIFY event. Line 67 say that this happens every RBWARNTIME = 43200 seconds (12 hours).

Line 68: Daemon upsmon will trigger a [nocomm] NOTIFY event after NOCOMMWARNTIME sec-
onds if it can’t reach any of the UPS entries in configuration file upsmon.conf. It keeps warning
you until the situation is fixed.

Page 12 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

Line 69: When running in master mode, upsmon waits this long after sending the [shutdown]
NOTIFY event to warn the users. After the timer elapses, it then runs your SHUTDOWNCMD as
specified on line 45. If you need to let your users do something in between those events, increase
this number. Remember, at this point your UPS battery is almost depleted, so don’t make this too
big. Alternatively, you can set this very low so you don’t wait around when it’s time to shut down.
Some UPSs don’t give much warning for low battery and will require a value of 0 here for a safe
shutdown.

For lots and lots of details, see man upsmon.conf. See also the file config-notes.txt in the
distribution.

2.5 The delayed UPS shutdown

upsdbeep
beep

beep

System shuts down

x seconds

seconds

offdelay = 20

UPS shuts down

upsdrvctl shutdown

UPS−1

UPS−1

upsdrvctl

+ driver

d
e
l
a
y
e
d
U
P
S
s
h
u
t
d
o
w
n
.
f
i
g

[OB LB]

ups.status:

Figure 15: Delayed UPS shutdown.

Somewhere in your distribution, as part of
the system shutdown process, there needs
to be an action to send a message to the
UPS to tell it that some time later, it too
will shut down. Note that the UPS does
not shutdown at the same time as the sys-
tem it protects. The UPS shutdown is
delayed. By default the delay is 20 sec-
onds. We will see in a later chapter how
to change this. (Line 77 if you’re curious.)

The delayed UPS shutdown command
may be from a shell script or a sys-
temd service unit but in all cases the
key element is the command upsdrvctl

shutdown.
Figure 16 shows the openSUSE adap-

tion of a shell script supplied by NUT to
be placed in a systemd “drop-in” direc-
tory for scripts which should be executed

as late as possible during a system shutdown. systemd detects automatically that a script in one
of these “drop-in” directories needs to be executed. There is no need to enable the script.

Gentoo users: see Denny Page’s post at https://alioth-lists.debian.net/pipermail/nut-upsuser
/2018-July/011172.html .

70 #!/bin/sh

71 #/usr/sbin/upsmon -K >/dev/null 2>&1 && /usr/sbin/upsdrvctl shutdown

Figure 16: NUT provided script for delayed UPS shutdown.

The openSUSE distribution places the delayed shutdown script provided by NUT and shown

Page 13 of 88

http://networkupstools.org/docs/man/upsmon.conf.html
https://github.com/networkupstools/nut/blob/master/docs/config-notes.txt
https://alioth-lists.debian.net/pipermail/nut-upsuser/2018-July/011172.html
https://alioth-lists.debian.net/pipermail/nut-upsuser/2018-July/011172.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

in figure 16 in file /usr/lib/systemd/system-shutdown/nutshutdown . The Debian distribution
places the script in file /lib/systemd/system-shutdown/nutshutdown . In both cases, the file
name “nutshutdown” seems to me to be a misnomer, since it is not NUT which is being shut down,
but such naming sloppiness is common.

This script is executed late in the system shutdown process, and there is no trace in the system
log of it’s action. If, like the editor, you believe that shutting off power to a system is a major
event, and should be logged, then you are invited to replace the script provided by NUT with a
systemd service unit as shown in appendix B which will log the delayed shutdown command.

2.6 The shutdown story for a simple server

We are now ready to tell the detailed story of how the server gets shut down when wall power fails,
and how it restarts when wall power returns.

1. Wall power on The system runs normally. upsd status is [ol]. No NOTIFY event.

Days, weeks, months go by...

2. Wall power fails The server remains operational running on the UPS battery. upsd polls
the UPS, and detects status change [ol]→[ob].

3. upsmon polls upsd and issues NOTIFY event [onbatt]. As instructed by line 58, an [onbatt]
message goes to syslog and to program wall. The server is still operational running on the
UPS battery.

Minutes go by...

4. Battery discharges below battery.charge.low The server remains operational, but
the UPS battery will not last much longer. upsd polls the UPS, and detects status change
[ob]→[ob lb].

5. upsmon polls upsd and issues new NOTIFY event [lowbatt]. As instructed by line 59
upsmon sends a [lowbatt] message to syslog and to program wall.

6. upsmon decides to command a system shutdown and generates NOTIFY event [shutdown].

7. upsmon waits FINALDELAY seconds as specified on line 69.

8. upsmon creates POWERDOWN flag specified on line 46.

9. upsmon calls the SHUTDOWNCMD specified on line 45.

10. We now enter the scenario described in figure 15. The operating system’s shutdown process
takes over. During the system shutdown, the Bash script shown in figure 16 or equivalent
systemd service unit or some other equivalent runs the command upsdrvctl shutdown . This
tells the UPS that it is to shut down 20 seconds later.

11. The system powers down, hopefully before the 20 seconds have passed.

Page 14 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

12. UPS shuts down 20 seconds have passed. With some UPS units, there is an audible
“clunk”. The UPS outlets are no longer powered. The absence of AC power to the protected
system for a sufficient time has the effect of resetting the BIOS options, and in particular the
option “Restore power on AC return”. This BIOS option will be needed to restart the box.
How long is a sufficient time for the BIOS to reset? This depends very much on the box.
Some need more than 10 seconds. What if wall power returns before the “sufficient time”
has elapsed? The UPS unit will wait until the time specified by the ondelay option in file
ups.conf. This timer, like the offdelay timer, starts from the moment the UPS receives the
upsdrvctl shutdown command. See line 78 in figure 17.

Minutes, hours, days go by...

13. Wall power returns Some time later, maybe much later, wall power returns. The UPS
reconnects it’s outlets to send power to the protected system.

14. The system BIOS option “Restore power on AC return” has hopefully been selected and the
system powers up. The bootstrap process of the operating system begins.

15. The operating system starts the NUT daemons upsd and upsmon. Daemon upsd starts the
driver(s) and scans the UPS. The UPS status becomes [ol lb].

16. After some time, the battery charges above the battery.charge.low threshold and upsd
declares the status change [ol lb]→[ol]. We are now back in the same situation as state 1
above.

As we saw in figure 15, there is a danger that the system will take longer
than 20 seconds to shut down. If that were to happen, the UPS shutdown
would provoke a brutal system crash. To alleviate this problem, the next
chapter proposes an improved configuration file ups.conf.

2.7 Configuration file ups.conf for a simple server, improved

Let’s revisit this configuration file which declares your UPS units.

72 # ups.conf, improved

73 [UPS-1]

74 driver = usbhid-ups

75 port = auto

76 desc = "Eaton ECO 1600"

77 offdelay = 60

78 ondelay = 70

79 lowbatt = 33

Figure 17: Configuration file ups.conf, im-
proved.

New line 77 increases from the default 20
secs to 60 secs the time that passes between
the upsdrvctl shutdown command and the
moment the UPS shuts itself down.

Line 78 increases the time that must pass
between the upsdrvctl shutdown command
and the moment when the UPS will react to
the return of wall power and turn on the power
to the system. Even if wall power returns ear-
lier, the UPS will wait ondelay = 70 seconds
before powering itself on. The default is 30
seconds.

Page 15 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

The ondelay must be greater than the offdelay. See man ups.conf for more news about this
configuration file.

Additional line 79 sets the default value for battery.charge.low. Even if you use command
upsrw to set a value for battery.charge.low, usbhid-ups and some other drivers4 will restore the
default, so if you want a permanent change you must change the default. See also chapter 2.10.

2.8 The shutdown story with quick power return

What happens if power returns after the system shuts down but before the UPS delayed shutdown?
We pick up the story from state 6.

6. upsmon decides to command a system shutdown and generates NOTIFY event [shutdown].

7. upsmon waits FINALDELAY seconds as specified on line 69.

8. upsmon creates POWERDOWN flag specified on line 46.

9. upsmon calls the SHUTDOWNCMD specified on line 45.

10. We now enter the scenario described in figure 15. The operating system’s shutdown process
takes over. During the system shutdown, the Bash script shown in figure 16 or equivalent
systemd service unit or some other equivalent runs the command upsdrvctl shutdown . This
tells the UPS that it is to shut down offdelay seconds later .

11. The system powers down before offdelay seconds have passed.

12. Wall power returns before the UPS shuts down Less than offdelay seconds have
passed. The UPS continues it’s shutdown process.

13. After offdelay seconds the UPS shuts down, disconnecting it’s outlets. The beeping stops.
With some UPS units, there is an audible “clunk”.

An interval of ondelay-offdelay seconds later

14. After ondelay seconds the UPS turns itself on, and repowers it’s outlets

15. The system BIOS option “restore power on AC return” has hopefully been selected and the
system powers up. The bootstrap process of the operating system begins.

The story continues at state 15 in chapter 2.6.

2.9 Utility program upscmd

Utility program upscmd is a command line program for sending commands directly to the UPS.
To see what commands your UPS will accept, type upscmd -l ups-name where ups-name is the
name of the UPS as declared in file ups.conf, line 32.
For example, to turn on the beeper, use command

4List needed

Page 16 of 88

http://networkupstools.org/docs/man/ups.conf.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

upscmd -u upsmaster -p sekret UPS-1@localhost beeper.enable

where upsmaster is the user declared on line 40 and sekret is the l33t password declared on line 41
in file upsd.users.

Command upscmd can be dangerous. Make sure that file upsd.users can be read and written
by root only. See man upscmd for more detail.

2.10 Utility program upsrw

Utility program upsrw is a command line program for changing the values of UPS variables. To see
which variables may be changed, type upsrw ups-name where ups-name is the name of the UPS
as declared in file ups.conf, line 32.
For example, at line 9 we saw that the battery.charge.low has been set to 50. We will change
this to something less conservative with command

upsrw -s battery.charge.low=33 -u upsmaster -p sekret UPS-1@localhost

where upsmaster is the user declared on line 40 and sekret is the password declared on line 41 in
file upsd.users. Now check that the value has been set with command

upsc UPS-1 battery.charge.low

which returns the value 33.
Once again, command upsrw can be dangerous. Make sure that file upsd.users can be read

and written by root only. See man upsrw for more detail.
Some drivers, for example usbhid-ups, reset battery.charge.low to the default value when

they start. To overcome this resistance, add the line lowbatt = 33 to the UPS definition in file
ups.conf as shown on line 79.

This chapter has described a basic configuration which is deficient in several ways:

• NUT messages are only available to those users who are constantly in front of text consoles
which display the output of the program wall. Systems with users of graphical interfaces
which do not display wall output will need stronger techniques.

• Program wall has not been internationalised. It cannot display letters with accents or any
non-latin character.

Chapter 4 will show how to overcome these difficulties.

Page 17 of 88

http://networkupstools.org/docs/man/upscmd.html
http://networkupstools.org/docs/man/upsrw.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

3 Server with multiple power supplies

This chapter extends the ideas of chapter 2 to cover a larger server which has multiple, hopefully
independent power supplies. The server is capable of running on two or more power supplies,
but must be shut down if there are less than two operational. The flexibility of NUT makes this
configuration easy: we will describe only the modifications to the configuration in chapter 2.

port

3493

upsdUPS−1

47014

UPS−2

47015

UPS−4

47025
upscom

upsrw

upsc

UPS−3

47024

upsdrvctl
+ driver

upsdrvctl
+ driver

upsdrvctl
+ driver

upsdrvctl
+ driver

upsmon

d
u
a
l
.
f
i
g

UPS−1: [ONLINE]

UPS−2: [LOWBATT]

UPS−3: [NOCOMM]

UPS−4: [ONLINE]

ups.status: [OL]

ups.status: [OB LB]

ups.status: [OL]

ups.status: []

Figure 18: Server with multiple power supplies.

Six configuration files specify the operation of NUT in the server with multiple power supplies.

1. The NUT startup configuration: nut.conf. Since this file is not strictly a part of NUT, and
is common to all configurations, it is discussed separately in appendix A.

2. The upsd UPS declarations: ups.conf, see chapter 3.1.

3. The upsd daemon access control; upsd.conf does not change, see chapter 2.2.

4. The upsd daemon user declarations: upsd.users do not change, see chapter 2.3.

5. The upsmon daemon configuration: upsmon.conf, see chapter 3.2.

6. The delayed UPS shutdown script. Since this file is common to all configurations, it is
discussed separately in appendix B.

3.1 Configuration file ups.conf for multiple power supplies

We add additional sections to ups.conf to declare the additional UPS units but we need some way
of distinguishing them. Assuming the usbhid-ups driver, man usbhid-ups describes how this can
be done.

Page 18 of 88

http://networkupstools.org/docs/man/usbhid-ups.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

80 # ups.conf, 4 power supplies

81 [UPS-1]

82 driver = usbhid-ups

83 port = auto

84 desc = "Power supply 1"

85 lowbatt = 33

86 serial = 47014

87 [UPS-2]

88 driver = usbhid-ups

89 port = auto

90 desc = "Power supply 2"

91 lowbatt = 33

92 serial = 47015

93 [UPS-3]

94 driver = usbhid-ups

95 port = auto

96 desc = "Power supply 3"

97 lowbatt = 33

98 serial = 47024

99 [UPS-4]

100 driver = usbhid-ups

101 port = auto

102 desc = "Power supply 4"

103 lowbatt = 33

104 serial = 47025

Figure 19: File ups.conf for multiple power supplies.

Driver usbhid-ups distinguishes multiple UPS units with some combination of the vendor,
product, serial and vendorid options that it provides. For oher drivers, which do not provide the
ability to distinguish UPS units, or for UPS units which have no serial number, see the comment
by Charles Lepple in NUT issue #597 at https://github.com/networkupstools/nut/issues/597.

Let’s assume that the UPS units used in this configuration are sophisticated products and
are capable of reporting their serial numbers. You can check this with command upsc UPS-1

@localhost ups.serial . In lines 86, 92, 98 and 104 we use this information to distinguish UPS-1

with serial = 47014, UPS-2 with serial = 47015, etc.
See man ups.conf and man usbhid-ups.

3.2 Configuration file upsmon.conf for multiple power supplies

This configuration file declares how upsmon is to handle NOTIFY events from the UPS units. For
good security, ensure that only users upsd/nut and root can read and write this file.

105 # upsmon.conf, multiple power supplies

106 MONITOR UPS-1@localhost 1 upsmaster sekret master

107 MONITOR UPS-2@localhost 1 upsmaster sekret master

108 MONITOR UPS-3@localhost 1 upsmaster sekret master

109 MONITOR UPS-4@localhost 1 upsmaster sekret master

110 MINSUPPLIES 2

Figure 20: Configuration file upsmon.conf for multiple power supplies, part 1 of 5.

On lines 106-109

• The UPS names UPS-1, UPS-2, etc. must correspond to those declared in ups.conf lines 81,
87. 93 and 99.

Page 19 of 88

https://github.com/networkupstools/nut/issues/597
https://github.com/networkupstools/nut/issues/597
https://github.com/{\penalty \z@ }networkupstools/{\penalty \z@ }nut/issues/{\penalty \z@ }597
http://networkupstools.org/docs/man/ups.conf.html
http://networkupstools.org/docs/man/usbhid-ups.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

• The “power value” 1 is the number of power supplies that each UPS feeds on this system.

• upsmaster is the “user” declared in upsd.users line 40.

• sekret is the password declared in upsd.users line 41.

• master means this system will shutdown last, allowing any slaves time to shutdown first.
Slave systems will be discussed in chapter 5. There are no slaves in this configuration.

Line 110, MINSUPPLIES, declares that at least two power supplies must be operational, and that
if fewer are available, NUT must shut down the server. Figure 18 shows that currently two of
the four power supplies are operational. The [ob lb] of UPS-2, which would have caused a system
shutdown in the case of the simple server in chapter 2 is not sufficient to provoke a system shutdown
in this case. UPS-3 has been disconnected, maybe even removed in order to paint the wall behind
it. (Have you ever worked for Big Business IT, or for Big Government IT?).

The remainder of upsmon.conf is the same as that for the simple server of chapter 2, figures
10-14.

3.3 Shutdown conditions for multiple power supplies

111 rprice@maria:~> for i in {1..100}

112 > do upsc UPS-1 ups.status 2>&1

113 > sleep 5s

114 > done

115 OL CHRG

116 OL CHRG

Action: disconnect UPS-1 USB cable
117 Broadcast Message from upsd@maria

118 UPS UPS-1@localhost: Communications lost

119 Error: Data stale

120 Error: Data stale

Action: reconnect UPS-1 USB cable
121 Broadcast Message from upsd@maria

122 UPS UPS-1@localhost: Communications (re-)established

123 OL CHRG

124 OL CHRG

Figure 21: Experiment to show effect of lost UPS. Part 1,

The value of MINSUPPLIES is the key element in determining if a server with multiple power
supplies should shut down. When all the UPS units can be contacted, and when their ups.status
values are known, then it is the count A of those that are active, that is without [lb], which is
determinant.

Page 20 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

If A ≥ MINSUPPLIES then OK else shutdown.

UPS-3: What is the value of A? The situation for those UPS units such as UPS-3 is more
delicate. If a UPS unit had been reporting the status [ol], then if communication is lost, NUT
assumes that the UPS is still operational. Command upsc UPS-3@localhost ups.status will
return the error message “Error: Data stale”, upsmon will raise the NOTIFY event [commbad]
and the sysadmin will receive the “Communications lost” message shown on line 54. However this
does not count as an [lb].

You can verify this yourself on a simple working configuration such as that of chapter 2 using
the Bash command shown on lines 111-114 in figure 21. Disconnecting the USB cable on a healthy
UPS does not cause a system shutdown.

125 rprice@maria:~> for i in {1..100}

126 > do upsc UPS-1 ups.status 2>&1

127 > sleep 5s

128 > done

129 OL CHRG

130 OL CHRG

Action: disconnect wall power

131 OB

132 OB

Action: disconnect UPS-1 USB cable
133 Broadcast Message from upsd@maria

134 UPS UPS-1@localhost: Communications lost

135 Error: Data stale

136 Error: Data stale

Result: system shutdown

Figure 22: Experiment to show effect of lost UPS. Part 2,

However, as shown in figure 22, disconnecting the USB lead on a sick UPS causes a rapid system
shutdown. If a UPS unit had been reporting the status [ob], then if communication is lost, NUT
assumes that the UPS is about to reach status [ob lb] and calls for a immediate system shutdown.

So the value of A depends not only on the current situation, but also on how the system got
into that state.

The moral of our story is that NUT will play safe, but you must be very careful who has access
to your server room. We will see in later chapters that there are ways of reinforcing the feedback
to the sysadmin.

Page 21 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

This chapter has described a complex UPS configuration in isolation, but in practice such a
configuration would be just a part of a complete server room, and the use of NUT would have to be
integrated with the rest of the server room power management. The layered design of NUT makes
this integration possible.

A recent book5 for managers on disaster recovery discusses UPS units. On page 559 it says “We
chose to have just one UPS do the paging ... We do it on low battery for one of the UPSes that
has a 15-minute run-time.” Clearly they wanted a timed action, but the only way they could get
it was by running down a UPS until it reached [lb]. NUT is capable of doing a lot better, as we
will show in later chapters.

5“The Backup Book: Disaster Recovery from Desktop to Data Center” by Dorian J. Cougias, E. L. Heiberger,
Karsten Koop, Schaser-Vartan Books, 2003, ISBN 0-9729039-0-9, 755 pages.

Page 22 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

4 Workstation with local users

This chapter extends the ideas of chapter 2 to provide a fully worked example of a configuration
which includes a simple user provided script. This will in turn form the basis for future chapters.

There are two approaches possible for supporting user scripts:

1. Directly from upsmon using NOTIFYCMD.

2. Indirectly via upssched and CMDSCRIPT.

We choose the latter since this introduces upssched, which will be needed later.

port

3493

upsd CMDSCRIPT

upssched−cmd

...
notify−send

...

upsc

upsrw

upscom

upsschedupsmon

UPS−1
ups.status: [OL]

+ driver

upsdrvctl

workstation.fig

NOTIFYCMD

Figure 23: Workstation with local users.

Eight configuration files specify the operation of NUT in the workstation.

1. The NUT startup configuration: nut.conf. Since this file is not strictly a part of NUT, and
is common to all configurations, it is discussed seperately in appendix A.

2. The upsd UPS declarations: The improved file ups.conf as given in chapter 2.7 does not
change.

3. The upsd daemon access control: File upsd.conf as given in chapter 2.2 does not change.

4. The upsd user declarations: File upsd.users as given in chapter 2.3 does not change.

5. The upsmon daemon configuration: upsmon.conf. See chapter 4.1.

6. The upssched configuration: upssched.conf. See chapter 4.2.

7. The upssched-cmd script: see chapter 4.3.

8. The delayed UPS shutdown script. Since this file is common to all configurations, it is
discussed seperately in appendix B.

Page 23 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

4.1 Configuration file upsmon.conf for a workstation

137 # upsmon.conf

138 MONITOR UPS-1@localhost 1 upsmaster sekret master

139 MINSUPPLIES 1

Figure 24: Configuration file upsmon.conf for a workstation, part 1 of 5.

This configuration file declares how upsmon is to handle NOTIFY events. For good security,
ensure that only users upsd/nut and root can read and write this file.

Line 138 is the same as line 44 in the previous chapter.
On line 139, MINSUPPLIES sets the number of power supplies that must be receiving power to

keep this system running. Normal computers have just one power supply, so the default value of
1 is acceptable. See man upsmon.conf and file big-servers.txt in the NUT documentation for
more details.

140 SHUTDOWNCMD "/sbin/shutdown -h +0"

141 NOTIFYCMD /usr/sbin/upssched

142 POLLFREQ 5

143 POLLFREQALERT 5

144 HOSTSYNC 15

145 DEADTIME 15

146 POWERDOWNFLAG /etc/killpower

Figure 25: Configuration file upsmon.conf for a workstation, part 2 of 5.

Line 140, identical to line 45 declares the command to be used to shut down the server.
Line 141 says which program is to be invoked when upsmon detects a NOTIFY event flagged

as EXEC. Ubuntu sysadmins might see /sbin/upssched.
Line 142, POLLFREQ, declares that the upsmon daemon will poll upsd every 5 seconds.
Line 143, POLLFREQALERT, declares that the upsmon daemon will poll upsd every 5 seconds while

the UPS in on battery.
Line 144, HOSTSYNC will be used in master-slave6 cooperation, to be discussed in chapter 5.4.

The default value is 15 seconds.
Line 145 specifies how long upsmon will allow a UPS to go missing before declaring it “dead”.

The default is 15 seconds.
Daemon upsmon requires a UPS to provide status information every few seconds as defined by

POLLFREQ and POLLFREQALERT. If the status fetch fails, the UPS is marked stale. If it stays stale
for more than DEADTIME seconds, the UPS is marked dead.

A dead UPS that was last known to be on battery [ob] is assumed to have changed to a low
battery condition [ob]→[ob lb]. This may force a shutdown. Disruptive, but the alternative is

6A slave is a second, third, ... PC or workstation sharing the same UPS,

Page 24 of 88

http://networkupstools.org/docs/man/upsmon.conf.html
http://www.susaaland.dk/sharedoc/nut-2.0.3/docs/big-servers.txt

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

barreling ahead into oblivion and crashing when you run out of power. See chapter 3.3 for more
discussion.

147 NOTIFYMSG ONLINE "UPS %s: On line power."

148 NOTIFYMSG ONBATT "UPS %s: On battery."

149 NOTIFYMSG LOWBATT "UPS %s: Battery is low."

150 NOTIFYMSG REPLBATT "UPS %s: Battery needs to be replaced."

151 NOTIFYMSG FSD "UPS %s: Forced shutdown in progress."

152 NOTIFYMSG SHUTDOWN "Auto logout and shutdown proceeding."

153 NOTIFYMSG COMMOK "UPS %s: Communications (re-)established."

154 NOTIFYMSG COMMBAD "UPS %s: Communications lost."

155 NOTIFYMSG NOCOMM "UPS %s: Not available."

156 NOTIFYMSG NOPARENT "upsmon parent dead, shutdown impossible."

Figure 26: Configuration file upsmon.conf for a workstation, part 3 of 5.

The message texts on lines 147-156 in figure 26 do not change.

157 NOTIFYFLAG ONLINE SYSLOG+WALL+EXEC

158 NOTIFYFLAG ONBATT SYSLOG+WALL+EXEC

159 NOTIFYFLAG LOWBATT SYSLOG+WALL+EXEC

160 NOTIFYFLAG REPLBATT SYSLOG+WALL

161 NOTIFYFLAG FSD SYSLOG+WALL

162 NOTIFYFLAG SHUTDOWN SYSLOG+WALL

163 NOTIFYFLAG COMMOK SYSLOG+WALL

164 NOTIFYFLAG COMMBAD SYSLOG+WALL

165 NOTIFYFLAG NOCOMM SYSLOG+WALL

166 NOTIFYFLAG NOPARENT SYSLOG+WALL

Figure 27: Configuration file upsmon.conf for a workstation, part 4 of 5.

Lines 157-159 now carry the EXEC flag: this flag means that when the NOTIFY event occurs,
upsmon calls the program identified by the NOTIFYCMD on line 141.

Lines 160-166 do not change.

167 RBWARNTIME 43200

168 NOCOMMWARNTIME 300

169 FINALDELAY 5

Figure 28: Configuration file upsmon.conf for a workstation, part 5 of 5.

Lines 167-169 are the same as lines 67-69.

Page 25 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

4.2 Configuration file upssched.conf for a workstation

The NOTIFY events detected by upsmon and flagged as EXEC in upsmon.conf become events for
upssched when NOTIFYCMD points to upssched. The program upssched provides a richer set of
actions than upsmon.

The configuration file upssched.conf described here shows only a simple subset of what can be
done. We will see more later.

170 # upssched.conf

171 CMDSCRIPT /usr/sbin/upssched-cmd

172 PIPEFN /var/lib/ups/upssched.pipe

173 LOCKFN /var/lib/ups/upssched.lock

174
175 AT ONLINE UPS-1@localhost EXECUTE online

176 AT ONBATT UPS-1@localhost EXECUTE onbatt

177 AT LOWBATT UPS-1@localhost EXECUTE lowbatt

Figure 29: Configuration file upssched.conf for a workstation.

On line 171 CMDSCRIPT points to a user script to be called for designated NOTIFY events. This
script will receive as argument a user chosen value. Ubuntu sysadmins might see /usr/local/bin/

upssched-script.
Line 172 defines PIPEFN which is the file name of a socket used for communication between

upsmon and upssched. It is important that the directory be accessible to NUT software and
nothing else. For line 172 the Debian distribution uses /var/run/nut/upssched.pipe.

Here is an example of directory /var/lib/ups taken from distribution openSUSE:

178 maria:/ # ls -alF /var/lib/ups

179 drwx------ 2 upsd daemon 4096 2 avril 22:53 ./

180 drwxr-xr-x 53 root root 4096 16 mai 01:15 ../

181 -rw-r--r-- 1 upsd daemon 6 2 avril 22:48 upsd.pid

182 srw-rw---- 1 upsd daemon 0 2 avril 22:53 upssched.pipe=

183 srw-rw---- 1 upsd daemon 0 2 avril 22:48 usbhid-ups-UPS-1=

184 -rw-r--r-- 1 upsd daemon 6 2 avril 22:48 usbhid-ups-UPS-1.pid

Daemon upsmon requires the LOCKFN declaration on line 173 to avoid race conditions. The
directory should be the same as PIPEFN.

Line 175 introduces the very useful AT declaration provided by upssched.conf. This has the
form

AT notifytype UPS-name command

where

• notifytype is a symbol representing a NOTIFY event.

Page 26 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

• UPS-name can be the special value “*” to apply this handler to every possible value of UPS-
name. We strongly recommend that you do not use this wildcard, since in later chapters we
need distinct actions for distinct UPS’s.

• The command in this case is EXECUTE. In later chapters we will see other very useful com-
mands.

Line 175 says what is to be done by upssched for event [online]. The field “UPS-1@localhost”
says that it applies to the UPS we are using, and the EXECUTE says that the user script specified
by CMDSCRIPT is to be called with argument “online”.

Lines 176 and 177 make similar declarations for NOTIFY events [onbatt] and [lowbatt].

4.3 Configuration script upssched-cmd for a workstation

When upssched was added to the NUT project, the user defined script was called “upssched-cmd”.
This is not the most elegant of names but if you use it, people in the NUT community will know
immediately what you mean. Ubuntu sysadmins sometimes use upssched-script which is better.

185 #!/bin/bash -u

186 # upssched-cmd

187 logger -i -t upssched-cmd Calling upssched-cmd $1

188 UPS="UPS-1"

189 STATUS=$(upsc $UPS ups.status)

190 CHARGE=$(upsc $UPS battery.charge)

191 CHMSG="[$STATUS]:$CHARGE%"

192 case $1 in

193 online) MSG="$UPS, $CHMSG - power supply has been restored." ;;

194 onbatt) MSG="$UPS, $CHMSG - power failure - save your work!" ;;

195 lowbatt) MSG="$UPS, $CHMSG - shutdown now!" ;;

196 *) logger -i -t upssched-cmd "Bad arg: \"$1\", $CHMSG"

197 exit 1 ;;

198 esac

199 logger -i -t upssched-cmd $MSG

200 notify-send-all "$MSG"

Figure 30: Configuration script upssched-cmd for a workstation.

Since NUT runs on a wide range of operating systems and distributions, with different default
scripting languages, it is wise to declare as on line 185 which scripting language is used.

Logging all calls to this script helps sysadmins to discover what went wrong after the catastrophic
failures which in theory should never occur, but which in practice do. Line 187 logs all calls to this
script.

Page 27 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

Lines 189-191 prepare a Bash variable CHMSG which gives the current UPS status and battery
charge. This is to be included in messages, so we get a clearer idea of what is happening.

On line 192 the value of the Bash variable $1 is one of the EXECUTE tags defined on lines 175-177.
Lines 193-195 define, for each possible NOTIFY event that upsmon passes on to upssched, a

message to be logged and put in front of users. Accented letters and non latin characters are
allowed.

Line 199 logs the upssched action, and line 200 calls program notify-send-all to put the message
in front of the users. For details of notify-send-all, see appendix C, “Using notify-send”. See also
notify-send --help. There is no man page.

It is important that script upssched-cmd be accessible to NUT software and nothing else. For
example the following restrictive ownership and permissions:

201 maria:/ # ls -alF /usr/sbin/upssched-cmd

202 -rwxr--r-- 1 upsd daemon 7324 2 avril 16:46 /usr/sbin/upssched-cmd*

Page 28 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

4.4 The shutdown story for a workstation

We are now ready to tell the detailed story of how the workstation gets shut down when wall power
fails, and how it restarts when wall power returns.

1. Wall power on The system runs normally. upsd status is [ol]. No NOTIFY event.

Days, weeks, months go by...

2. Wall power fails The server remains operational running on the UPS battery. upsd polls
the UPS, and detects status change [ol]→[ob].

3. upsmon polls upsd and issues NOTIFY event [onbatt]. As instructed by line 158 an [on-
batt] message goes to syslog, to program wall and to upssched. The server is still operational,
running on the UPS battery.

4. upssched ignores the message it receives and follows the instruction on line 176 to call the
user script upssched-cmd with parameter onbatt.

5. User script upssched-cmd sees that $1 = onbatt and on line 194 sets Bash variable $MSG to
UPS-1, [OB DISCHRG]:99% - power failure - save your work!

6. On line 199, the message is logged, and on line 200 program notify-send-all notifies the users.

Minutes go by...

7. Battery discharges below battery.charge.low The server remains operational, but
the UPS battery will not last much longer. upsd polls the UPS, and detects status change
[ob]→[ob lb].

8. upsmon polls upsd and issues new NOTIFY event [lowbatt]. As instructed by line 159
upsmon sends a [lowbatt] message to syslog, to program wall and to upssched.

The following upssched actions may not occur if the system shutdown is rapid.

9. upssched ignores the message it receives and follows the instruction on line 177 to call the
user script upssched-cmd with parameter lowbatt.

10. User script upssched-cmd sees that $1 = lowbatt and on line 195 sets Bash variable $MSG to
UPS-1, [OB DISCHRG LB]:12% - shutdown now!

11. On line 199, the message is logged, and on line 200 program notify-send notifies the users.

The shutdown story now continues as for the simple server in state 6.

Page 29 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

5 Workstations share a UPS

This chapter discusses a variant of the workstation configuration of chapter 4: multiple workstations
on the same UPS unit.

port

3493

workstations

take power from

the same UPS as

the "master"

The "slave"

upsd

hic sunt dragones

CMDSCRIPT

CMDSCRIPT

upsc

upsrw

upscom

upssched

upssched−cmd

...
notify−send

...

upssched

upsc

upsrw

upscom

upssched−cmd

...
notify−send

...

upsmon
master

upsmon
slave

UPS−1

ups.status: [OL]

upsdrvctl
+ driver

slave.fig

NOTIFYCMD

NOTIFYCMD

Figure 31: “Slave” workstations take power from same UPS as “master”.

In this configuration two or more workstations are powered by the same UPS unit. Only one,
the “master”, has a control lead to the UPS. The other(s) do not have control leads to the UPS
and are known as “slaves”.

Figure 31 shows the arrangement. The NUT configuration for the master workstation is identical
to that of chapter 4.

Five configuration files specify the operation of NUT in the slave workstation.

1. The NUT startup configuration: nut.conf. Since there is no control lead to the UPS, there
is no need for upsd or a driver in the slave. In nut.conf declare MODE=netclient since only
upsmon needs to be started. You will probably need to review your distribution’s start-up
scripts to achieve this. If upsd is started but without any UPS specified, it usually does no
harm. See also appendix A.

2. The upsmon daemon configuration: upsmon.conf. See chapter 5.1.

3. The upssched configuration: upssched.conf. See chapter 5.2.

4. The upssched-cmd script: see chapter 5.3.

5. The delayed UPS shutdown script. Since this file is common to all configurations, it is
discussed separately in appendix B.

Page 30 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

5.1 Configuration file upsmon.conf for a slave

203 # upsmon.conf -- slave --

204 MONITOR UPS-1@master 1 upsmaster sekret slave

205 MINSUPPLIES 1

Figure 32: Configuration file upsmon.conf for a slave, part 1 of 5.

This configuration file declares how upsmon in the slave is to handle NOTIFY events coming
from the master. For good security, ensure that only users upsd/nut and root can read and write
this file.

On line 204

• The UPS name UPS-1 must correspond to that declared in the master ups.conf, line 32. The
fully qualified name UPS@host includes the network name of the master workstation, in this
case master.

• The “power value” 1 is the number of power supplies that this UPS feeds on this system.

• upsmaster is the “user” declared in master upsd.users line 40.

• sekret is the password declared in master upsd.users line 41.

• slave means this system will shutdown first, before the master.

On line 205, MINSUPPLIES sets the number of power supplies that must be receiving power to
keep this system running. Normal computers have just one power supply, so the default value of 1 is
acceptable. See chapter 3, man upsmon.conf and file big-servers.txt in the NUT documentation
for more details.

206 SHUTDOWNCMD "/sbin/shutdown -h +0"

207 NOTIFYCMD /usr/sbin/upssched

208 POLLFREQ 5

209 POLLFREQALERT 5

210 HOSTSYNC 15

211 DEADTIME 15

212 POWERDOWNFLAG /etc/killpower

Figure 33: Configuration file upsmon.conf for a slave, part 2 of 5.

Line 206, identical to line 45, declares the command to be used to shut down the slave.
Line 207 says which program is to be invoked when upsmon detects a NOTIFY event flagged

as EXEC. Debian administrators would probably specify /sbin/upssched .
Line 208, POLLFREQ, declares that the upsmon daemon will poll upsd in the master every 5

seconds.

Page 31 of 88

http://networkupstools.org/docs/man/upsmon.conf.html
http://www.susaaland.dk/sharedoc/nut-2.0.3/docs/big-servers.txt

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

Line 209, POLLFREQALERT, declares that the upsmon daemon will poll upsd in the master every
5 seconds while the UPS in on battery.

Line 210, HOSTSYNC will be used for managing the master-slave shutdown sequence, to be dis-
cussed in chapter 5.4. The default value is 15 seconds.

Line 211 specifies how long the slave upsmon will allow a UPS to go missing before declaring it
“dead”. The default is 15 seconds.

Daemon upsmon requires a UPS to provide status information every few seconds as defined by
POLLFREQ and POLLFREQALERT. If the status fetch fails, the UPS is marked stale. If it stays stale
for more than DEADTIME seconds, the UPS is marked dead.

A dead UPS that was last known to be on battery [ob] is assumed to have changed to a low
battery condition [ob]→[ob lb]. This may force a shutdown. Disruptive, but the alternative is
barreling ahead into oblivion and crashing when you run out of power. See chapter 3.3 for more
discussion.

213 NOTIFYMSG ONLINE "UPS %s: On line power."

214 NOTIFYMSG ONBATT "UPS %s: On battery."

215 NOTIFYMSG LOWBATT "UPS %s: Battery is low."

216 NOTIFYMSG REPLBATT "UPS %s: Battery needs to be replaced."

217 NOTIFYMSG FSD "UPS %s: Forced shutdown in progress."

218 NOTIFYMSG SHUTDOWN "Auto logout and shutdown proceeding."

219 NOTIFYMSG COMMOK "UPS %s: Communications (re-)established."

220 NOTIFYMSG COMMBAD "UPS %s: Communications lost."

221 NOTIFYMSG NOCOMM "UPS %s: Not available."

222 NOTIFYMSG NOPARENT "upsmon parent dead, shutdown impossible."

Figure 34: Configuration file upsmon.conf for a slave, part 3 of 5.

The message texts on lines 213-222 in figure 34 do not change from those in the master.

223 NOTIFYFLAG ONLINE SYSLOG+WALL+EXEC

224 NOTIFYFLAG ONBATT SYSLOG+WALL+EXEC

225 NOTIFYFLAG LOWBATT SYSLOG+WALL+EXEC

226 NOTIFYFLAG REPLBATT SYSLOG+WALL

227 NOTIFYFLAG FSD SYSLOG+WALL

228 NOTIFYFLAG SHUTDOWN SYSLOG+WALL

229 NOTIFYFLAG COMMOK SYSLOG+WALL

230 NOTIFYFLAG COMMBAD SYSLOG+WALL

231 NOTIFYFLAG NOCOMM SYSLOG+WALL

232 NOTIFYFLAG NOPARENT SYSLOG+WALL

Figure 35: Configuration file upsmon.conf for a slave, part 4 of 5.

Lines 223-225, which do not change from those in the master, carry the EXEC flag: when the
NOTIFY event occurs, slave upsmon calls the program identified by the NOTIFYCMD on line 207.

Page 32 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

233 RBWARNTIME 43200

234 NOCOMMWARNTIME 300

235 FINALDELAY 5

Figure 36: Configuration file upsmon.conf for a slave, part 5 of 5.

Lines 226-232 do not change from those in the master.
Lines 233-235 are the same as lines 67-69 in the master.

5.2 Configuration file upssched.conf for a slave

The NOTIFY events detected by slave upsmon and flagged as EXEC in upsmon.conf become events
for upssched when NOTIFYCMD points to upssched. The program upssched provides a richer set of
actions than upsmon.

As with the master in chapter 4, the configuration file upssched.conf described here shows
only a simple subset of what can be done. We will see more later.

236 # upssched.conf -- slave --

237 CMDSCRIPT /usr/sbin/upssched-cmd

238 PIPEFN /var/lib/ups/upssched.pipe

239 LOCKFN /var/lib/ups/upssched.lock

240
241 AT ONLINE UPS-1@master EXECUTE online

242 AT ONBATT UPS-1@master EXECUTE onbatt

243 AT LOWBATT UPS-1@master EXECUTE lowbatt

Figure 37: Configuration file upssched.conf for a slave.

On line 237, CMDSCRIPT points to a user script to be called for designated NOTIFY events. This
script will receive as argument a user chosen value.

Line 238 defines PIPEFN which is the file name of a socket used for communication between
upsmon and upssched. As in the master, it is important that the directory be accessible to NUT
software and nothing else. The value shown in figure 37 is for the openSUSE distribution. Debian
uses /var/run/nut/upssched.pipe.

Daemon upsmon requires the LOCKFN declaration on line 239 to avoid race conditions. The
directory should be the same as PIPEFN.

Line 241 says what is to be done by upssched for NOTIFY event [online]. The “UPS-1@master”
says that it applies to the UPS controlled by the master, and the EXECUTE says that the user script
specified by CMDSCRIPT is to be called with argument “online”.

Lines 242 and 243 make similar declarations for NOTIFY events [onbatt] and [lowbatt].

Page 33 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

5.3 Configuration script upssched-cmd for a slave

When upssched was added to the NUT project, the user defined script was called “upssched-cmd”.
This is not the most elegant of names but if you use it, people in the NUT community will know
immediately what you mean.

It is important that script upssched-cmd be accessible to NUT software and nothing else.

244 #!/bin/bash -u

245 # upssched-cmd --slave --

246 logger -i -t upssched-cmd Calling upssched-cmd $1

247 case $1 in

248 online) MSG="UPS-1 - power supply had been restored." ;;

249 onbatt) MSG="UPS-1 - power failure - save your work!" ;;

250 lowbatt) MSG="UPS-1 - shutdown now!" ;;

251 *) logger -i -t upssched-cmd "Bad arg: \"$1\""

252 exit 1 ;;

253 esac

254 logger -i -t upssched-cmd $MSG

255 notify-send-all "$MSG"

Figure 38: Configuration script upssched-cmd for a slave.

Since NUT runs on a wide rage of operating systems and distributions, with different default
scripting languages, it is wise to declare as on line 244 which scripting language is used.

Logging all calls to this script helps sysadmins to discover what went wrong after the catastrophic
failures which in theory should never occur, but which in practice sometimes do. Line 246 logs all
calls to this script.

On line 247 the value of the Bash variable $1 is one of the EXECUTE tags defined on lines 241-243.
Lines 248-250 define, for each possible NOTIFY event that upsmon passes on to upssched, a

message to be logged and put in front of users of the slave. Accented letters and non latin characters
are allowed.

Line 254 logs the upssched action, and line 255 calls program notify-send-all to put the message
in front of the slave users. For details of notify-send-all, see appendix C, “Using notify-send”. See
also notify-send --help. There is no man page.

Page 34 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

5.4 Magic: How does the master shut down the slaves?

The master commands the system shutdowns which may be due to an [lb], a timeout (chapter 7),
or a sysadmin command. When there are slaves to be shutdown as well, then the master expects
them to shut down first. But how do the slaves know that they are to shut down?

When the master makes the shutdown decision, it places a status symbol [fsd] in the abstract
image of the UPS maintained by it’s upsd. The slave upsmon daemons poll the master upsd every
POLLFREQ seconds as delared on line 142, and when they see the [fsd] symbol, knowing that they
are a slave, they shut down immediately. The master waits for the slaves to react and shutdown.
The waiting period is specified by HOSTSYNC on line 144. After this time has elapsed, the master
will shut down, even if there is a slave which has not yet completed it’s shutdown. If you meet this
problem, you may have to increase the value of HOSTSYNC.

This HOSTSYNC value is also used to keep slave systems from getting stuck if the master fails to
respond in time. After a UPS becomes critical, the slave will wait up to HOSTSYNC seconds for the
master to set the [fsd] flag. If that timer expires, the slave will assume that the master is broken
and will shut down anyway. See also man upsmon.conf.

Page 35 of 88

http://networkupstools.org/docs/man/upsmon.conf.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

6 Workstation with heartbeat

The NUT software runs in the background for weeks, months without difficulty and with no mes-
sages going the system administrator. “All is well!”, but is it? NUT is a collection of pieces and
interconnecting protocols. What if one of these pieces has stopped or the protocol blocked? We
need something that will check regularly that all is indeed well. The proposed heartbeat does this
job.

This chapter supposes that you already have a working configuration for a workstation.

port

3493

heartbeat.dev

10m

upsd
CMDSCRIPT

upsc

upsrw

upscom

upsschedupsmon

11m

upssched−cmd

...

...

UPS−1

upsdrvctl
+ driver

upsdrvctl
+ driver

[OL] / [OB] / [OL] ...

ups.status:

ups.status: [OL]

heartbeat.fig

NOTIFYCMD

Figure 39: Workstation with heartbeat.

How does it work? NUT program upssched runs permanently as a daemon managing an
11 minute timer. If this timer expires, NUT is broken and upssched calls user script upssched-cmd
which issues wall messages, e-mails, notifications, etc. Meanwhile a dummy (software) UPS is
programmed to generate a status change every 10 minutes. This works it’s way through the NUT
daemons and protocols to reach user script upssched-cmd which then restarts the 11 minute timer.
As long as the 10 minute status changes are fully and correctly handled by NUT, the warning
message does not go out, but if something breaks, the 11 minute timer elapses.

Nine configuration files specify the operation of NUT in the workstation.

1. The NUT startup configuration: nut.conf. See appendix A.

2. The upsd UPS declarations: ups.conf will be extended to include the heartbeat. See chapter
6.1.

3. New configuration file heartbeat.dev defines the dummy UPS which provides the heartbeat.
See chapter 6.2.

4. The upsd daemon access control: File upsd.conf as given in chapter 2.2 stays the same.

5. The upsd user declarations: File upsd.users as given in chapter 2.3 does not change.

6. The upsmon daemon configuration: upsmon.conf. See chapter 6.3.

7. The upssched configuration: upssched.conf. See chapter 6.4.

8. The upssched-cmd script: see chapter 6.5.

Page 36 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

9. The delayed UPS shutdown script. Since this file is common to all configurations, it is
discussed separately in appendix B.

6.1 Configuration file ups.conf for workstation with heartbeat

We extend this configuration file with an additional section to declare a new UPS unit.

256 # ups.conf, heartbeat

257 [UPS-1]

258 driver = usbhid-ups

259 port = auto

260 desc = "Eaton ECO 1600"

261 offdelay = 60

262 ondelay = 70

263 lowbatt = 33

264 [heartbeat]

265 driver = dummy-ups

266 port = heartbeat.dev

267 desc = "Watch over NUT"

Figure 40: Configuration file ups.conf for workstation with heartbeat.

Lines 257-263 are unchanged.
New line 264 declares the new dummy UPS heartbeat. This will be a software creation which

looks to NUT like a UPS, but which can be programmed with a script, and given arbitrary states.
Line 265 says that this UPS is of type dummy-ups, i.e. a software UPS, for which the behaviour

will be in a file specified by the port declaration.
Line 266 says that the behaviour is in file heartbeat.dev in the same directory as ups.conf.

It is traditional in NUT that such files have file type .dev .
See man dummy-ups for lots of details.

Page 37 of 88

http://networkupstools.org/docs/man/dummy-ups.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

6.2 Configuration file heartbeat.dev for workstation

268 # heartbeat.dev -- 10 minute heartbeat

269 ups.status: OL

270 TIMER 300

271 ups.status: OB

272 TIMER 300

Figure 41: Configuration file heartbeat.dev for workstation.

Heartbeat definitions are not provided by NUT, you have to create them yourself. Create the
new file heartbeat.dev in the same directory as ups.conf. For security, only users upsd/nut and
root should have write access to this file.

The dummy UPS will cycle continuously through this script.
Lines 269 and 271 flip the ups.status value between [ol] and [ob].
Lines 270 and 272 place a 5 minute time interval between each status change. 2 × 300sec =

10min, the heartbeat period.

6.3 Configuration file upsmon.conf for workstation with heartbeat

The configuration file upsmon.conf is the same as for the workstation in chapter 4, except for an
additional MONITOR declaration and a simpler NOTIFYFLAG to avoid flooding the logs.

273 # upsmon.conf

274 MONITOR UPS-1@localhost 1 upsmaster sekret master

275 MONITOR heartbeat@localhost 0 upsmaster sekret master

276 MINSUPPLIES 1

Figure 42: Configuration file upsmon.conf for a workstation with heartbeat.

The change is the addition of line 275 which declares that upsmon is to monitor the heartbeat.
Note that the power value is “0” because the heartbeat does not supply power to the workstation.

To avoid flooding your logs, remove the flags SYSLOG and WALL for the [online] and [onbatt]
NOTIFY events:

277 NOTIFYFLAG ONLINE EXEC

278 NOTIFYFLAG ONBATT EXEC

All the other declarations remain unchanged. This inability of upsmon to provide different
behaviours for different UPS’s is a weakness, and is why we prefer to make use of upssched which
supports precise selection of the UPS in it’s AT specification.

Page 38 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

6.4 Configuration file upssched.conf for workstation with heartbeat

We use upssched as a daemon to maintain an 11 minute timer which we call heartbeat-failure
-timer. The timer is kept in memory, and manipulated with the commands START-TIMER and
CANCEL-TIMER. If this timer completes, upssched calls the user script upssched-cmd with the pa-
rameter heartbeat-failure-timer, and upssched-cmd will complain that NUT is broken.

The configuration file upssched.conf is the same as for the workstation in chapter 4, except
for two additional declarations.

279 # Restart timer which completes only if the dummy-ups heart beat

280 # has stopped. See timer values in heartbeat.dev

281 AT ONBATT heartbeat@localhost CANCEL-TIMER heartbeat-failure-timer

282 AT ONBATT heartbeat@localhost START-TIMER heartbeat-failure-timer 660

Figure 43: Configuration file upssched.conf for a workstation with heartbeat.

Remember that the very useful AT declaration provided by upssched.conf has the form

AT notifytype UPS-name command

On line 281, when upssched receives an [onbatt] it executes the command which is CANCEL

-TIMER heartbeat-failure-timer. This kills the timer. upssched does not call the user script.
Immediately afterwards, on line 282, and for the same [onbatt] event, upssched executes the

command START-TIMER heartbeat-failure-timer 660 which restarts the heartbeat-failure

-timer which will run for 660 sec, i.e. 11 minutes. If the timer completes, upssched will call the
user script upssched-cmd with parameter heartbeat-failure-timer.

Make sure that there are no entries such as

283 AT ONLINE * ...

284 AT ONBATT * ...

which would be activated by an [online] or [onbatt] from the heartbeat UPS. Replace the ”*”
with the full address of the UPS unit, e.g. UPS-1@localhost.

6.5 Script upssched-cmd for workstation with heartbeat

In upssched-cmd, we add additional code to test for completion of the heartbeat-failure-timer,
and when it completes send a warning to the sysadmin by e-mail, SMS, pigeon, ...

Here is an example of what can be done. Note the e-mail address declarations in the head of
the script, and the additional case after “case $1 in” beginning on line 302.

On lines 290 and 291, change the e-mail addresses to something that works for you.
Lines 302-309 introduce the heartbeat-failure-timer case into the case statement. Line 303

specifies a message to be logged with the current UPS status as defined on lines 293-296.
Lines 305-307 compose a message to the sysadmin which is sent on line 308. The message

includes the current state of those NUT kernel processes which are operational.

Page 39 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

285 #!/bin/bash -u

286 # upssched-cmd for workstation with heartbeat

287 logger -i -t upssched-cmd Calling upssched-cmd $1

288
289 # Send emails to/from these addresses

290 EMAIL_TO="sysadmin@example.com"

291 EMAIL_FROM="upssched-cmd@${HOSTNAME:-nut}.example.com"

292
293 UPS="UPS-1"

294 STATUS=$(upsc $UPS ups.status)

295 CHARGE=$(upsc $UPS battery.charge)

296 CHMSG="[$STATUS]:$CHARGE%"

297
298 case $1 in

299 (online) MSG="$UPS, $CHMSG - power supply had been restored." ;;

300 (onbatt) MSG="$UPS, $CHMSG - power failure - save your work!" ;;

301 (lowbatt) MSG="$UPS, $CHMSG - shutdown now!" ;;

302 (heartbeat-failure-timer)

303 MSG="NUT heart beat fails. $CHMSG" ;;

304 # Email to sysadmin

305 MSG1="Hello, upssched-cmd reports NUT heartbeat has failed."

306 MSG2="Current status: $CHMSG \n\n$0 $1"

307 MSG3="\n\n$(ps -elf | grep -E ’ups[dms]|nut’)"

308 echo -e "$MSG1 $MSG2 $MSG3" | /bin/mail -r "$EMAIL_FROM" \

309 -s "NUT heart beat fails. Currently $CHMSG" "$EMAIL_TO"

310 (*) logger -i -t upssched-cmd "Bad arg: \"$1\", $CHMSG"

311 exit 1 ;;

312 esac

313 logger -i -t upssched-cmd $MSG

314 notify-send-all "$MSG"

Figure 44: Configuration script upssched-cmd including heartbeat.

A true sysadmin should not be satisfied with just the heartbeat. “What if the heartbeat dies
silently?” We need a further independent check that the normally silent heartbeat is doing it’s job.

Page 40 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

6.6 For paranöıd sysadmins

We want to check that the heartbeat is in progress. To do so we make use of the permanent presence
of a upssched process. Consider the following Bash script:

315 #!/bin/bash -u

316 NUT=upsd # openSUSE: "upsd", Debian: "nut"

317 MSGERR="${HOSTNAME:-mybox}: NUT heartbeat fails"

318 MSGOK="${HOSTNAME:-mybox}: NUT heartbeat OK"

319 # Are the heartbeat timers keeping upssched busy?

320 ps -elf | grep "upssched UPS heartbeat" | grep $NUT > /dev/null

321 if [[$? -ne 0]]

322 then wall $MSGERR # Tell sysadmin the bad news

323 echo -e "$MSGERR" | /bin/mail\

324 -r heartbeat-watcher@example.com\

325 -s "$MSGERR" sysadmin@example.com

326 notify-send-all "$MSGERR"

327 sleep 1s

328 else # Tell sysadmin that all is well

329 echo -e "$MSGOK" | /bin/mail\

330 -r heartbeat-watcher@example.com\

331 -s "$MSGOK" sysadmin@example.com

332 notify-send-all "$MSGOK"

333 fi

Figure 45: Heartbeat watcher.

Line 316 specifies who is the owner of the upssched process.
Line 320 will succeed if there is a process managing the heartbeat.
Lines 322, 323 and 326 show three different ways of telling the sysadmin that all is well with the

heartbeat process. Pick which one(s) suit you. See appendix C for a discussion of notify-send-all.
The Bash script requires something like line 334 in /etc/crontab:

334 1 8 * * * upsd /usr/local/bin/heartbeat-watcher.sh > /dev/null 2>&1

In this example, line 334 declares that the Bash script is to be run at 08:01 hrs every day as
user “upsd”. Debian would use “nut”. See man crontab(5).

This chapter has introduced the timers provided by upssched. We will see in the next chapter
that much more can be done with them.

Page 41 of 88

http://man7.org/linux/man-pages/man5/crontab.5.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

7 Workstation with timed shutdown

All the configurations we have looked at so far have one thing in common. The system shutdown
is provoked by UPS status [lb]. This means that when the system finally shuts down, the battery
is depleted. It will still be depleted when wall power returns and the system restarts. This is not a
problem if the power supply is inherently reliable, and the power supply will continue long enough
to recharge the batteries, but this is not always the case. The maintenance people do not always fix
the problem completely on their first visit. In neighbourhoods where lightning strikes frequently,
where local industrial activity plays havoc with the voltage, and in neighbourhoods with training
schools for backhoe operators, we expect the wall power to fail again, and again.

In this chapter the criteria for a system shutdown will not be based on the status [lb], but on
the status [ob] and an elapsed time.

It is sometimes said in NUT circles “get the most out of your UPS by hanging on as long as
possible”. In this chapter we say “get the most out of your UPS by being able to shut down cleanly
as often as possible”.

port

3493

heartbeat.dev

10m

upsd
CMDSCRIPT

upsc

upsrw

upscom

upsschedupsmon

upssched−cmd

2, 1, 0, shutdown
shutdown−timer:

UPS−1 upsdrvctl
+ driver

upsdrvctl
+ driver

ups.status: [OL CHRG]

ups.status:

[OL] / [OB] / [OL] ...

bad.fig

NOTIFYCMD

Figure 46: Workstation with timed shutdown.

Nine configuration files specify the operation of NUT in a workstation with timed shutdown. In
this chapter we will give these configuration files in full to avoid excessive page turning.

1. The NUT startup configuration: nut.conf. Since this file is not strictly a part of NUT, and
is common to all configurations, it is discussed separately in appendix A.

2. The upsd UPS declarations ups.conf: See chapter 7.1.

3. Configuration file heartbeat.dev which defines the dummy UPS providing the heartbeat.
See chapter 7.2.

4. The upsd daemon access control upsd.conf: See chapter 7.3.

5. The upsd user declarations upsd.users: See chapter 7.4.

6. The upsmon daemon configuration: upsmon.conf. See chapter 7.5.

7. The upssched configuration: upssched.conf. See chapter 7.6.

8. The upssched-cmd script: see chapter 7.7.

Page 42 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

9. The delayed UPS shutdown script. Since this file is common to all configurations, it is
discussed separately in appendix B.

7.1 Configuration file ups.conf for workstation with timed shutdown

335 # ups.conf, timed shutdown

336 [UPS-1]

337 driver = usbhid-ups

338 port = auto

339 desc = "Eaton ECO 1600"

340 offdelay = 60

341 ondelay = 70

342 lowbatt = 33

343
344 [heartbeat]

345 driver = dummy-ups

346 port = heartbeat.dev

347 desc = "Watch over NUT"

Figure 47: Configuration file ups.conf for workstation with timed shutdown.

This configuration file includes support for the heartbeat, and is unchanged from that discussed
in the previous chapter. See 6.1

Lines 336 and 344 begin a UPS-specific section, and name the UPS unit that upsd will manage.
The following lines provides details for each UPS. There will as many sections as there are UPS
units. Make sure this name matches the name in upsmon.conf and in upssched-cmd, which we will
meet later.

Lines 337 and 345 specify the driver that upsd will use. For the full list of drivers, see the
Hardware Compatibility list and the required drivers at http://www.networkupstools.org/stable-
hcl.html.

Lines 338 and 346 depend on the driver. For the usbhid-ups driver the value is always auto.
For the dummy-ups driver, the value is the address of the file which specifies the dummy UPS
behaviour. This file should be in the same directory as ups.conf.

For other drivers, see the man page for that driver.
Lines 339 and 347 provide descriptive texts for the UPS.
For a detailed discussion of offdelay and ondelay on lines 340-341, see chapter 2.7.
Additional line 342 sets the default value for battery.charge.low. Even if you use command

upsrw to set a value for battery.charge.low, usbhid-ups and some other drivers7 will restore the
default, so if you want a permanent change you must change the default. See also chapter 2.10.

7List needed

Page 43 of 88

http://www.networkupstools.org/stable-hcl.html
http://www.networkupstools.org/stable-hcl.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

7.2 Configuration file heartbeat.dev for workstation with timed shut-
down

Create the new file heartbeat.dev in the same directory as ups.conf.

348 # heartbeat.dev -- 10 minute heartbeat

349 ups.status: OL

350 TIMER 300

351 ups.status: OB

352 TIMER 300

Figure 48: Configuration file heartbeat.dev for workstation with timed shutdown.

This configuration file provides the definition of the heartbeat, and is unchanged from that
discussed in chapter 6.2.

Heartbeat definitions are not provided by NUT, you have to create them yourself. Create the
new file heartbeat.dev in the same directory as ups.conf. For security, only users upsd/nut and
root should have write access to this file.

The dummy UPS will cycle continuously through this script.
Lines 349 and 351 flip the ups.status value between [ol] and [ob].
Lines 350 and 352 place a 5 minute time interval between each status change. 2 × 300sec =

10min, the heartbeat period.

7.3 Configuration file upsd.conf with timed shutdown

353 # upsd.conf

354 LISTEN 127.0.0.1 3493

355 LISTEN ::1 3493

Figure 49: Configuration file upsd.conf or workstation with timed shutdown.

This configuration file declares on which ports the upsd daemon will listen, and provides a basic
access control mechanism. It does not change from the version shown on lines 37-38.

Line 354 declares that upsd is to listen on it’s prefered port for traffic from the localhost. It is
possible to replace 127.0.0.1 by 0.0.0.0 which says “listen for traffic from all sources” and use your
firewall to filter traffic to port 3493.

If you do not have IPv6, remove or comment out line 355.

Page 44 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

7.4 Configuration file upsd.users with timed shutdown

356 # upsd.users

357 [upsmaster]

358 password = sekret

359 upsmon master

Figure 50: Configuration file upsd.users for
a simple server.

This configuration file declares who has write
access to the UPS. It does not change from
the version shown in lines 40-42. For good
security, ensure that only users upsd/nut and
root can read and write this file.

Line 357 declares the “user name” of the
system administrator who has write access to
the UPS’s managed by upsd. It is independent

of /etc/passwd. The upsmon client daemon will use this name to poll and command the UPS’s.
There may be several names with different levels of access. For this example we only need one.

Line 358 provides the password. You may prefer something better than “sekret”.
Line 359 declares that this user is the upsmon daemon, and the required set of actions will be

set automatically. In this simple configuration daemon upsmon is a master.
The configuration file for upsmon must match these declaration for upsmon to operate correctly.
For lots of details, see man upsd.users.

7.5 Configuration file upsmon.conf with timed shutdown

The previous chapters have repeatedly modified upsmon.conf so we provide here a complete de-
scription of the file, including all previous modifications.

360 # upsmon.conf

361 MONITOR UPS-1@localhost 1 upsmaster sekret master

362 MONITOR heartbeat@localhost 0 upsmaster sekret master

363 MINSUPPLIES 1

Figure 51: Configuration file upsmon.conf with timed shutdown, part 1 of 5.

This configuration file declares how upsmon is to handle NOTIFY events. For good security,
ensure that only users upsd/nut and root can read and write this file.

On line 361

• The UPS name UPS-1 must correspond to that declared in ups.conf line 336.

• The “power value” 1 is the number of power supplies that this UPS feeds on this system.

• upsmaster is the “user” declared in upsd.users line 40.

• sekret is the password declared in upsd.users line 41.

• master means this system will shutdown last, allowing any slaves time to shutdown first.
There are no slaves in this simple configuration.

Page 45 of 88

http://networkupstools.org/docs/man/upsd.users.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

Line 362 declares that upsmon is also to monitor the heartbeat.
On line 363, MINSUPPLIES sets the number of power supplies that must be receiving power to

keep this system running. Normal computers have just one power supply, so the default value of
1 is acceptable. See man upsmon.conf and file big-servers.txt in the NUT documentation for
more details.

364 SHUTDOWNCMD "/sbin/shutdown -h +0"

365 NOTIFYCMD /usr/sbin/upssched

366 POLLFREQ 5

367 POLLFREQALERT 5

368 DEADTIME 15

369 POWERDOWNFLAG /etc/killpower

Figure 52: Configuration file upsmon.conf with timed shutdown, part 2 of 5.

Line 364 declares the command to be used to shut down the server. A second instance of the
upsmon daemon running as root will execute this command. Multiple commands are possible, for
example SHUTDOWNCMD "logger -t upsmon.conf \"SHUTDOWNCMD calling /sbin/shutdown to

shut down system\" ; /sbin/shutdown -h +0" will also log the action of SHUTDOWNCMD. Note
that internal ” have to be escaped.

Line 365 says which program is to be invoked when upsmon detects a NOTIFY event flagged
as EXEC. Debian and Ubuntu sysadmins might see /sbin/upssched.

Line 366, POLLFREQ, declares that the upsmon daemon will poll upsd every 5 seconds.
Line 367, POLLFREQALERT, declares that the upsmon daemon will poll upsd every 5 seconds while

the UPS in on battery.
Line 368, DEADTIME specifies how long upsmon will allow a UPS to go missing before declaring

it “dead”. The default is 15 seconds.
Daemon upsmon requires a UPS to provide status information every few seconds as defined by

POLLFREQ and POLLFREQALERT. If the status fetch fails, the UPS is marked stale. If it stays stale
for more than DEADTIME seconds, the UPS is marked dead.

A dead UPS that was last known to be on battery [ob] is assumed to have changed to a low
battery condition [ob]→[ob lb]. This may force a shutdown. Disruptive, but the alternative is
barreling ahead into oblivion and crashing when you run out of power. See chapter 3.3 for more
discussion.

Line 369, POWERDOWNFLAG declares a file created by upsmon when running in master mode
when the UPS needs to be powered off. It will be used in more complex configurations. See man

upsmon.conf for details.
Lines 370-379 assign a text message to each NOTIFY event. Within each message, the marker %s

is replaced by the name of the UPS which has produced this event. upsmon passes this message to
program wall to notify the system administrator of the event. You can change the default messages
to something else if you like. The format is NOTIFYMSG event "message" where %s is replaced
with the identifier of the UPS in question. Note that program wall has not been internationalized

Page 46 of 88

http://networkupstools.org/docs/man/upsmon.conf.html
http://www.susaaland.dk/sharedoc/nut-2.0.3/docs/big-servers.txt
http://networkupstools.org/docs/man/upsmon.conf.html
http://networkupstools.org/docs/man/upsmon.conf.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

370 NOTIFYMSG ONLINE "UPS %s: On line power."

371 NOTIFYMSG ONBATT "UPS %s: On battery."

372 NOTIFYMSG LOWBATT "UPS %s: Battery is low."

373 NOTIFYMSG REPLBATT "UPS %s: Battery needs to be replaced."

374 NOTIFYMSG FSD "UPS %s: Forced shutdown in progress."

375 NOTIFYMSG SHUTDOWN "Auto logout and shutdown proceeding."

376 NOTIFYMSG COMMOK "UPS %s: Communications (re-)established."

377 NOTIFYMSG COMMBAD "UPS %s: Communications lost."

378 NOTIFYMSG NOCOMM "UPS %s: Not available."

379 NOTIFYMSG NOPARENT "upsmon parent dead, shutdown impossible."

Figure 53: Configuration file upsmon.conf with timed shutdown, part 3 of 5.

and does not support accented letters or non latin characters. When the corresponding NOTIFYFLAG

contains the symbol EXEC, upsmon also passes the message to the program specified by NOTIFYCMD

on line 365.

380 NOTIFYFLAG ONLINE EXEC

381 NOTIFYFLAG ONBATT EXEC

382 NOTIFYFLAG LOWBATT SYSLOG+WALL

383 NOTIFYFLAG REPLBATT SYSLOG+WALL

384 NOTIFYFLAG FSD SYSLOG+WALL

385 NOTIFYFLAG SHUTDOWN SYSLOG+WALL

386 NOTIFYFLAG COMMOK SYSLOG+WALL

387 NOTIFYFLAG COMMBAD SYSLOG+WALL

388 NOTIFYFLAG NOCOMM SYSLOG+WALL

389 NOTIFYFLAG NOPARENT SYSLOG+WALL

Figure 54: Configuration file upsmon.conf with timed shutdown, part 4 of 5.

Lines 380-389 declare what is to be done at each NOTIFY event. The declarations, known as
“flags” are shown in table 13. You may specify one, two or three flags for each event, in the form
FLAG[+FLAG]*, however IGNORE must always be alone.

Lines 380-381 carry only the EXEC flag: Since the heartbeat induces a lot of [online] and
[onbatt] traffic, the SYSLOG option would flood the log and WALL would put far too many useless
messages in xterm windows. When the NOTIFY event occurs, EXEC declares that upsmon should
call the program identified by the NOTIFYCMD on line 365.

Note that if you have multiple UPS’s, the same actions are to be performed for a given NOTIFY
event for all the UPS’s. Clearly this is not good news.

When a UPS says that it needs to have its battery replaced, upsmon will generate a [replbatt]
NOTIFY event. Line 390 say that this happens every RBWARNTIME = 43200 seconds (12 hours).

Line 391: Daemon upsmon will trigger a [nocomm] NOTIFY event after NOCOMMWARNTIME

seconds if it can’t reach any of the UPS entries in configuration file upsmon.conf. It keeps warning
you until the situation is fixed.

Page 47 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

390 RBWARNTIME 43200

391 NOCOMMWARNTIME 300

392 FINALDELAY 5

Figure 55: Configuration file upsmon.conf with timed shutdown, part 5 of 5.

Line 392: When running in master mode, upsmon waits this long after sending the [shutdown]
NOTIFY event to warn the users. After the timer elapses, it then runs your SHUTDOWNCMD as
specified on line 364. If you need to let your users do something in between those events, increase
this number. Remember, at this point your UPS battery is almost depleted, so don’t make this too
big. Alternatively, you can set this very low so you don’t wait around when it’s time to shut down.
Some UPSs don’t give much warning for low battery and will require a value of 0 here for a safe
shutdown.

For lots and lots of details, see man upsmon.conf. See also the file config-notes.txt in the
distribution.

7.6 Configuration file upssched.conf with timed shutdown

The NOTIFY events detected by upsmon and flagged as EXEC in upsmon.conf become events for
upssched when NOTIFYCMD points to upssched. The program upssched provides a richer set of
actions than upsmon, especially the management of timers.

393 # upssched.conf

394 CMDSCRIPT /usr/sbin/upssched-cmd

395 PIPEFN /var/lib/ups/upssched.pipe

396 LOCKFN /var/lib/ups/upssched.lock

397
398 AT ONBATT UPS-1@localhost START-TIMER two-minute-warning-timer 5

399 AT ONBATT UPS-1@localhost START-TIMER one-minute-warning-timer 65

400 AT ONBATT UPS-1@localhost START-TIMER shutdown-timer 125

401
402 AT ONLINE UPS-1@localhost CANCEL-TIMER two-minute-warning-timer

403 AT ONLINE UPS-1@localhost CANCEL-TIMER one-minute-warning-timer

404 AT ONLINE UPS-1@localhost CANCEL-TIMER shutdown-timer

405 AT ONLINE UPS-1@localhost EXECUTE ups-back-on-line

406
407 AT ONBATT heartbeat@localhost CANCEL-TIMER heartbeat-failure-timer

408 AT ONBATT heartbeat@localhost START-TIMER heartbeat-failure-timer 660

Figure 56: Configuration file upssched.conf with timed shutdown.

On line 394 CMDSCRIPT points to a user script to be called for designated NOTIFY events. This
script will receive as argument a user chosen timer name. Ubuntu sysadmins might see /usr/

local/bin/upssched-script.

Page 48 of 88

http://networkupstools.org/docs/man/upsmon.conf.html
https://github.com/networkupstools/nut/blob/master/docs/config-notes.txt

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

Line 395 defines PIPEFN which is the file name of a socket used for communication between
upsmon and upssched. It is important that the directory be accessible to NUT software and
nothing else. For line 395 the Debian distribution uses /var/run/nut/upssched.pipe.

Here is an example of directory /var/lib/ups taken from distribution openSUSE:

409 drwx------ 2 upsd daemon 4096 24 mai 11:04 ./

410 drwxr-xr-x 53 root root 4096 24 mai 01:15 ../

411 srw-rw---- 1 upsd daemon 0 20 mai 23:13 dummy-ups-heartbeat=

412 -rw-r--r-- 1 upsd daemon 5 20 mai 23:13 dummy-ups-heartbeat.pid

413 -rw-r--r-- 1 upsd daemon 5 20 mai 23:13 upsd.pid

414 srw-rw---- 1 upsd daemon 0 24 mai 11:04 upssched.pipe=

415 srw-rw---- 1 upsd daemon 0 20 mai 23:13 usbhid-ups-UPS-1=

416 -rw-r--r-- 1 upsd daemon 5 20 mai 23:13 usbhid-ups-UPS-1.pid

Daemon upsmon requires the LOCKFN declaration on line 396 to avoid race conditions. The
directory should be the same as PIPEFN.

Line 398 introduces the very useful AT declaration provided by upssched.conf. This has the
form

AT notifytype UPS-name command

where

• notifytype is a symbol representing a NOTIFY event.

• UPS-name can be the special value “*” to apply this handler to every possible value of UPS-
name. We strongly recommend that you do not use this wildcard, since we need distinct
actions for distinct UPS’s.

• The command values are START-TIMER, CANCEL-TIMER and EXECUTE.

Line 398 says what is to be done by upssched for event [onbatt]. The field “UPS-1@localhost”
says that it applies to the UPS we are using, and the START-TIMER says that upssched is to create
and manage a timer called “two-minute-warning-timer” which runs for 5 seconds. When this
timer completes, upssched calls the user script specified by CMDSCRIPT with argument “two-minute
-warning-timer”.

Lines 399 and 400 do the same thing for the 65 second timer one-minute-warning-timer and
the 125 second timer shutdown-timer.

Line 402 says what is to be done by upssched for event [online]. The field “UPS-1@localhost”
says that it applies to the UPS we are using, and the CANCEL-TIMER says that upssched must cancel
the timer “two-minute-warning-timer”. The user script is not called.

Lines 403 and 404 do the same thing for the 65 second timer “one-minute-warning-timer”
and the 125 second timer “shutdown-timer”.

Page 49 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

Line 405 command EXECUTE says that upssched is to call the user script immediately with the
argument “ups-back-on-line”.

On line 407, when upssched receives an [onbatt] it executes the command which is CANCEL

-TIMER heartbeat-failure-timer. This kills the timer. upssched does not call the user script.
Immediately afterwards, on line 408, and for the same [onbatt] event, upssched executes the

command START-TIMER heartbeat-failure-timer 660 which restarts the heartbeat-failure

-timer which will run for 660 sec, i.e. 11 minutes. If the timer completes, upssched will call the
user script upssched-cmd with parameter heartbeat-failure-timer.

7.7 Script upssched-cmd for workstation with timed shutdown

417 #!/bin/bash -u

418 # upssched-cmd Workstation with heartbeat and timed shutdown

419 logger -i -t upssched-cmd Calling upssched-cmd $1

420 # Send emails to/from these addresses

421 EMAIL_TO="sysadmin@example.com"

422 EMAIL_FROM="upssched-cmd@${HOSTNAME:-nut}.example.com"

423 UPS="UPS-1"

424 STATUS=$(upsc $UPS ups.status)

425 CHARGE=$(upsc $UPS battery.charge)

426 CHMSG="[$STATUS]:$CHARGE%"

Figure 57: Configuration script upssched-cmd for timed shutdown, 1 of 2.

The user script upssched-cmd, the example is in Bash, manages the completion of the timers
two-minute-warning-timer, one-minute-warning-timer, shutdown-timer, ups-back-on-line
and heartbeat-failure-timer. Here is an complete example of what can be done. You will
probably need to modify this for your own use. Note that this script could be written in the
language of your choice, as long as the resulting program is able to receive the timer names as a
parameter, send e-mails and log and notify the users of messages. Bash has the advantage of being
widely available and is understood by many sysadmins.

On lines 421 and 422, change the e-mail addresses to something that works for you.
Lines 423-426 prepare a Bash variable CHMSG which gives the current UPS status and battery

charge. This is to be included in messages, so we get a clearer idea of what is happening.
Lines 428-434 introduce the heartbeat-failure-timer case into the case statement. Line 429

specifies a message to be logged with the current UPS status as defined on lines 423-426.
Lines 430-432 compose a message to the sysadmin which is sent on line 433. The message

includes the current state of those NUT kernel processes which are operational.

Page 50 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

427 case $1 in

428 (heartbeat-failure-timer)

429 MSG="NUT heart beat fails. $CHMSG" ;;

430 MSG1="Hello, upssched-cmd reports NUT heartbeat has failed."

431 MSG2="Current status: $CHMSG \n\n$0 $1"

432 MSG3="\n\n$(ps -elf | grep -E ’ups[dms]|nut’)"

433 echo -e "$MSG1 $MSG2 $MSG3" | /bin/mail -r "$EMAIL_FROM" \

434 -s "NUT heart beat fails. Currently $CHMSG" "$EMAIL_TO" ;;

435 (two-minute-warning-timer)

436 MSG="Possible shutdown in 2 minutes. Save your work! $CHMSG" ;;

437 (one-minute-warning-timer)

438 MSG="Probable shutdown in 1 minute. Save your work! $CHMSG" ;;

439 (shutdown-timer)

440 MSG="Power failure shutdown: Calling upsmon -c fsd, $CHMSG" ;;

441 /usr/sbin/upsmon -c fsd ;;

442 (ups-back-on-line)

443 MSG="Power back, shutdown cancelled. $CHMSG" ;;

444 (*) logger -i -t upssched-cmd "Bad arg: \"$1\", $CHMSG"

445 exit 1 ;;

446 esac

447 logger -i -t upssched-cmd $MSG

448 notify-send-all "$MSG"

Figure 58: Configuration script upssched-cmd for timed shutdown, 2 of 2.

7.7.1 The timed shutdown

The cases at lines 435 and 437 specify warnings to be notified to the users when the two-minute

-warning-timer and one-minute-warning-timer complete.
Beginning at line 439 we prepare a message which the user may not see, since we call for an

immediate shutdown. The UPS may well be almost fully charged, but the shutdown is now, leaving
enough charge for further shutdowns in the near future.

Note on line 441 that we use upsmon to shut down the system. This automatically takes into
account any slave systems which need to be shut down as well.

Line 442 prepares a message that notify-send-all will put in front of the users to tell them to
get back to work since wall power has returned. See appendix C for a discussion of notify-send-all.

Page 51 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

7.8 The timed shutdown story

We now tell the detailed story of how the workstation gets shut down when wall power fails, and
how it restarts when wall power returns.

1. Wall power on The system runs normally. upsd status is [ol]. No NOTIFY event.

Days, weeks, months go by...

2. Wall power fails The workstation remains operational running on the UPS battery. upsd
polls the UPS, and detects status change [ol]→[ob].

3. upsmon polls upsd and issues NOTIFY event [onbatt]. As instructed by line 381 upsmon
calls upssched, specified by NOTIFYCMD on line 365. Note that there is no wall message and
no logging by upsmon.

4. upssched matches the NOTIFY event [ONBATT] and the UPS name UPS-1@localhost with
the three AT specifications on lines 398-400. Three timers start: two-minute-warning-timer,
one-minute-warning-timer and shutdown-timer, managed in memory by upssched.

5 seconds go by...

5. two-minute-warning-timer completes, and upssched calls the user script upssched-cmd spec-
ified by CMDSCRIPT on line 394 with the timer name as argument. In the script, this matches
the case on line 435 which defines a suitable warning message in Bash variable MSG. Line 447
logs this message and line 448 puts it in front of the users. The workstation continues to
operate on battery power.

60 seconds go by...

6. one-minute-warning-timer completes, and upssched calls the user script upssched-cmd with
the timer name as argument. In the script, this matches the case on line 437 which defines a
stronger warning message in Bash variable MSG. Line 447 logs this message and line 448 puts
it in front of the users. The workstation continues to operate on battery power.

60 seconds go by...

7. shutdown-timer completes, and upssched calls the user script upssched-cmd with the timer
name as argument. In the script, this matches the case on line 439 which defines an ultimate
warning message in Bash variable MSG, and then calls upsmon for a system shutdown. Line
447 logs message MSG and line 448 puts it in front of the users. The workstation continues to
operate on battery power during the shutdown. If wall power returns, it is now too late to
call off the shutdown procedure.

8. upsmon commands a system shutdown and generates NOTIFY event [shutdown].

9. upsmon waits FINALDELAY seconds as specified on line 392.

10. upsmon creates POWERDOWN flag specified on line 369.

11. upsmon calls the SHUTDOWNCMD specified on line 364.

Page 52 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

12. We now enter the scenario described in figure 15. The operating system’s shutdown process
takes over. During the system shutdown, the Bash script shown in figure 16 or equivalent
systemd service unit or some other equivalent runs the command upsdrvctl shutdown . This
tells the UPS that it is to shut down offdelay seconds later as specified on line 340.

13. The system powers down, hopefully before the offdelay seconds have passed.

14. UPS shuts down offdelay seconds have passed. With some UPS units, there is an
audible “clunk”. The UPS outlets are no longer powered.

Minutes, hours, days go by...

15. Wall power returns Some time later, maybe much later, wall power returns. The UPS
reconnects it’s outlets to send power to the protected system.

16. The system BIOS option “restore power on AC return” has hopefully been selected and the
system powers up. The bootstrap process of the operating system begins.

17. The operating system starts the NUT daemons upsd and upsmon. Daemon upsd scans the
UPS and the status becomes [ol]. We are now back in the same situation as state 1 above.

18. We hope that the battery has retained sufficient charge to complete further timed shutdown
cycles, but if it hasn’t, then at the next power failure, upsd will detect the status [ob lb],
upsmon will issue a [lowbatt] and will begin the system shutdown process used by the
simple server of chapter 2. This system shutdown will override any upssched timed process.

Page 53 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

8 Workstation with additional equipment

The time has come to look at a more ambitious configuration, with multiple UPS’s and multiple
computer systems. NUT has been designed as an assembly of components each performing a
distinct part of the operation. We now see that this design allows NUT to adapt and perform well
in complex configurations.

������
������
������

������
������
������

heartbeat.dev

10m

3
undisclosed device

UPS−3 protects

computer "gold" which

drives undisclosed device

UPS−2 protects remote

management workstation "mgmt"

UPS−1 protects NUT

port

3493

mgmtupsd

3493

port
gold

upsd

hic sunt dragones

CMDSCRIPT

upsschedupsmon

upsc

upsrw

upscom 2, 1, 0, shutdown

upssched−cmd

shutdown−timer:

UPS−1

UPS−3
00328

UPS−2
XT766

upsdrvctl

+ driver

upsdrvctl

+ driver

ups.status: [OL]

ups.status: [OL CHRG]

upsdrvctl

+ driver

upsdrvctl

+ driver ups.status:

[OL] / [OB] / [OL] ...

ups.status: [OL]

big.fig

NOTIFYCMD

Figure 59: Workstation with additional equipment.

The configuration is for an industrial application in which some unspecified industrial equipment
is protected by a UPS, and is also driven by a computer system having it’s own UPS. This equipment
with the driving computer is at a remote site, code name gold . Overall management is from a

computer at a different site. We will call the management system mgmt .

Computer mgmt is represented here as if it were a single machine, but it could well be duplicated

at different sites for reliability. Two (or more) mgmt systems may monitor a single gold production
machine.

Fourteen configuration files specify the operation of NUT in the production and management
machines.

1. gold : The NUT startup configuration: nut.conf. This file is not strictly a part of NUT,

Page 54 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

and is common to all configurations. See chapter 8.1 and appendix A.

2. gold : The upsd UPS declarations ups.conf: See chapter 8.2.

3. gold : The upsd daemon access control upsd.conf: See chapter 8.3.

4. gold : The upsd user declarations upsd.users: See chapter 8.4.

5. gold : The delayed UPS shutdown script. Since this file is common to all configurations, it is
discussed separately in appendix B. The shutdown script for the undisclosed device is beyond
the scope of this text.

6. mgmt : The NUT startup configuration: nut.conf. This file is not strictly a part of NUT,
and is common to all configurations. See chapter 8.1 also appendix A.

7. mgmt : The upsd UPS declarations ups.conf: See chapter 8.2.

8. mgmt : The upsd heartbeat declaration heartbeat.dev: See chapter 8.2.

9. mgmt : The upsd daemon access control upsd.conf: See chapter 8.3.

10. mgmt : The upsd user declarations upsd.users: See chapter 8.4.

11. mgmt : The upsmon daemon configuration upsmon.conf: See chapter 8.5.

12. mgmt : The upssched configuration upssched.conf: See chapter 8.6.

13. mgmt : The upssched-cmd script: See chapter 8.7.

14. mgmt : The delayed UPS shutdown script. Since this file is common to all configurations, it
is discussed separately in appendix B.

8.1 Configuration files nut.conf

The first configuration files say which parts of the NUT are to be started.
gold mgmt

449 # nut.conf -- gold --

450 MODE=netserver

Figure 60: File nut.conf for gold .

451 # nut.conf -- mgmt --

452 MODE=standalone

Figure 61: Files nut.conf for mgmt .

Strictly speaking, this file is not for NUT, but for the process which starts NUT. The initial-
ization process is expected to source this file to know which parts of nut are to be started. Some
distributions, e.g. openSUSE, ignore this file and start the three NUT layers driver, upsd and
upsmon. They assume that MODE=standalone.

This is probably satisfactory for mgmt , but for gold you should review line 450 and the
init/systemd startup of the NUT software to ensure that only the upsd and driver daemons get
started. See appendix A. See also man nut.conf.

Page 55 of 88

http://networkupstools.org/docs/man/nut.conf.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

8.2 Configuration files ups.conf and heartbeat.dev

These configuration files declare which UPS’s are to be managed by the instances of NUT.
gold mgmt

453 # ups.conf -- gold --

454 [UPS-3]

455 driver = usbhid-ups

456 port = auto

457 desc = "Huge 3 phase"

458 offdelay = 20

459 ondelay = 30

460 lowbatt = 33

461 serial = 00328

462
463 [UPS-2]

464 driver = usbhid-ups

465 port = auto

466 desc = "Small monophase"

467 offdelay = 20

468 ondelay = 30

469 lowbatt = 33

470 serial = XT766

Figure 62: File ups.conf for gold .

471 # ups.conf -- mgmt --

472 [UPS-1]

473 driver = usbhid-ups

474 port = auto

475 desc = "Eaton ECO 1600"

476 offdelay = 60

477 ondelay = 70

478 lowbatt = 33

479
480 [heartbeat]

481 driver = dummy-ups

482 port = heartbeat.dev

483 desc = "Watch over NUT"

Figure 63: File ups.conf for mgmt .

484 # heartbeat.dev -- 10 min

485 ups.status: OL

486 TIMER 300

487 ups.status: OB

488 TIMER 300

Figure 64: heartbeat.dev for mgmt .

gold : On lines 454-463 we offer specimen definitions for UPS-3 and UPS-2. You will need to
review these to take into account the UPS’s you are using. Lines 464 and 455 specify the drivers
that upsd will use. For the full list of drivers, see the Hardware Compatibility list and the required
drivers at http://www.networkupstools.org/stable-hcl.html.

The offdelay and ondelay on lines 458-459 and 467-468 are given their default values. You
may need something different. See the discussion in chapter 2.5 of the delayed UPS shutdown.

In order to distinguish the two USB attached UPS units on gold , we specify their serial numbers
on lines 461 and 470. See man usbhid-ups.

mgmt : On lines 472-477 we offer a specimen definition for UPS-1 and on lines 485-488 we
propose the dummy UPS “heartbeat” discussed in chapter 6. The heartbeat requires the definition
file heartbeat.dev, lines 485-488, to be placed in the same directory as ups.conf.

Page 56 of 88

http://www.networkupstools.org/stable-hcl.html
http://networkupstools.org/docs/man/usbhid-ups.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

8.3 Configuration files upsd.conf

gold mgmt
489 # upsd.conf -- gold --

490 LISTEN 10.8.0.5 3493

491 LISTEN X::Y::Z 3493

Figure 65: File upsd.conf for gold .

492 # upsd.conf -- mgmt --

493 LISTEN 127.0.0.1 3493

494 LISTEN ::1 3493

Figure 66: File upsd.conf for mgmt .

This configuration file declares on which ports the upsd daemon will listen, and provides a basic
access control mechanism. You will need a secure means of accessing gold from mgmt . This could
be for example through an SSH tunnel or over a VPN. The limited access defined by the LISTEN

directive is part of a defense in depth.
gold : Line 490 declares that upsd is to listen on a prefered port for traffic from mgmt . The

example is for the tun0 interface of an OpenVPN secure network. See https://openvpn.net/ . It
is possible to specify 0.0.0.0 which says “listen for traffic from all sources” and use your firewall to
filter traffic to port 3493. You must modify lines 490 and 491 for your own needs.

mgmt : Line 493 declares that upsd is to listen on it’s prefered port for traffic from the localhost.
It is possible to replace 127.0.0.1 by 0.0.0.0 which says “listen for traffic from all sources” and use
your firewall to filter traffic to port 3493.

If you do not have IPv6, remove or comment out lines 491 and 494.
See man upsd.conf for more detail, and a description of the OpenSSL support.

8.4 Configuration files upsd.users

gold mgmt
495 # upsd.users -- gold --

496 [upsmaster]

497 password = sekret

498 upsmon master

Figure 67: File upsd.users for gold .

499 # upsd.users -- mgmt --

500 [upsmaster]

501 password = sekret

502 upsmon master

Figure 68: File upsd.users for mgmt .

This configuration file declares who has write access to the UPS. The “user name” used in these
files is independent of /etc/passwd. For good security, ensure that only users upsd/nut and root
can read and write this file. The configuration files for upsmon must match these declarations for
upsmon to operate correctly.

For lots of details, see man upsd.users.
gold : Line 496 declares the “user name” of the system administrator who has write access to

UPS-2 and UPS-3 managed by upsd. The upsmon client daemon in mgmt will use this name to
poll and command the UPS’s.

Line 497 provides the password. You may prefer something better than “sekret”.
Line 498 declares the type of relationship between the upsd daemon on gold and the upsmon

Page 57 of 88

https://openvpn.net/
http://networkupstools.org/docs/man/upsd.conf.html
http://networkupstools.org/docs/man/upsd.users.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

in mgmt which has the authority to shutdown gold . The declaration “upsmon slave” would
allow monitoring but not shutdown. See man upsd.users. See also man upsmon section UPS
DEFINITIONS, but our configuration is not exactly what that man page refers to.

mgmt : Line 500 declares the “user name” of the system administrator who has write access to
UPS-1 and to the heartbeat managed by upsd.

Line 501 provides another uberl33t password.
Line 502 declares the type of relationship between the upsd daemon and upsmon which has the

authority to shutdown mgmt .

8.5 Configuration file upsmon.conf

The previous chapters have repeatedly modified upsmon.conf so we provide here a complete de-
scription of the file.

503 # upsmon.conf -- mgmt --

504 MONITOR UPS-3@gold 0 upsmaster sekret master

505 MONITOR UPS-2@gold 0 upsmaster sekret master

506 MONITOR UPS-1@localhost 1 upsmaster sekret master

507 MONITOR heartbeat@localhost 0 upsmaster sekret master

508 MINSUPPLIES 1

Figure 69: Configuration file upsmon.conf for mgmt , part 1 of 5.

This configuration file declares how upsmon in mgmt is to handle NOTIFY events from gold

and from mgmt itself. For good security, ensure that only users upsd/nut and root can read and
write this file.

Line 504 specifies that upsmon on mgmt will monitor UPS-3 which supplies power to the
undisclosed device.

• The UPS name UPS-3 must correspond to that declared in ups.conf line 468.

• The “power value” 1 is the number of power supplies that this UPS feeds on the local system.
A “power value” of 0 means that the UPS-3 does not supply power to mgmt .

• upsmaster is the “user” declared in upsd.users line 496.

• sekret is the l33t password declared in upsd.users line 497.

• master means this system will shutdown last, allowing any slaves time to shutdown first.
There are no slaves on gold .

Line 505 specifies that upsmon on mgmt will also monitor UPS-2 which supplies the gold
computer.

Line 506 specifies that upsmon on mgmt will monitor UPS-1 which supplies power to mgmt
itself. Note the “power value” of 1.

Page 58 of 88

http://networkupstools.org/docs/man/upsd.users.html
http://networkupstools.org/docs/man/upsmon.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

Line 507 declares that upsmon is also to monitor the heartbeat.
On line 508, MINSUPPLIES sets the number of power supplies that must be receiving power to

keep the mgmt system running. Normal computers have just one power supply, so the default value
of 1 is acceptable. See man upsmon.conf and file big-servers.txt in the NUT documentation for
more details.

509 SHUTDOWNCMD "/sbin/shutdown -h +0"

510 NOTIFYCMD /usr/sbin/upssched

511 POLLFREQ 5

512 POLLFREQALERT 5

513 DEADTIME 15

514 POWERDOWNFLAG /etc/killpower

Figure 70: Configuration file upsmon.conf for mgmt , part 2 of 5.

Line 509 declares the command to be used to shut down mgmt . A second instance of the upsmon

daemon running as root on mgmt will execute this command. Multiple commands are possible, for
example SHUTDOWNCMD "logger -t upsmon.conf \"SHUTDOWNCMD calling /sbin/shutdown to

shut down system\" ; /sbin/shutdown -h +0" will also log the action of SHUTDOWNCMD. Note
that internal ” have to be escaped.

The shutdown command for gold is not specified in upsmon.conf. It appears in the user script
upssched-cmd in chapter 8.7.

Line 510 says which program is to be invoked when upsmon detects a NOTIFY event flagged
as EXEC.

Line 511, POLLFREQ, declares that the upsmon daemon will poll upsd in gold and in mgmt
every 5 seconds.

Line 512, POLLFREQALERT, declares that the upsmon daemon will poll the upsd daemons every
5 seconds while any UPS in on battery.

Line 513, DEADTIME specifies how long upsmon will allow a UPS to go missing before declaring
it “dead”. The default is 15 seconds.

Daemon upsmon requires a UPS to provide status information every few seconds as defined by
POLLFREQ and POLLFREQALERT. If the status fetch fails, the UPS is marked stale. If it stays stale
for more than DEADTIME seconds, the UPS is marked dead.

A dead UPS-1 that was last known to be on battery [ob] is assumed to have changed to a
low battery condition [ob]→[ob lb]. This may force a shutdown of mgmt . Disruptive, but the
alternative is barreling ahead into oblivion and crashing when you run out of power. See chapter
3.3 for more discussion.

Line 514, POWERDOWNFLAG declares a file created by upsmon when running in master mode when
UPS-1 needs to be powered off. See man upsmon.conf for details.

Lines 515-524 assign a text message to each NOTIFY event. Within each message, the marker
%s is replaced by the name of the UPS which has produced this event. On mgmt upsmon passes
this message to program wall to notify the system administrator of the event. You can change

Page 59 of 88

http://networkupstools.org/docs/man/upsmon.conf.html
http://www.susaaland.dk/sharedoc/nut-2.0.3/docs/big-servers.txt
http://networkupstools.org/docs/man/upsmon.conf.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

515 NOTIFYMSG ONLINE "UPS %s: On line power."

516 NOTIFYMSG ONBATT "UPS %s: On battery."

517 NOTIFYMSG LOWBATT "UPS %s: Battery is low."

518 NOTIFYMSG REPLBATT "UPS %s: Battery needs to be replaced."

519 NOTIFYMSG FSD "UPS %s: Forced shutdown in progress."

520 NOTIFYMSG SHUTDOWN "Auto logout and shutdown proceeding."

521 NOTIFYMSG COMMOK "UPS %s: Communications (re-)established."

522 NOTIFYMSG COMMBAD "UPS %s: Communications lost."

523 NOTIFYMSG NOCOMM "UPS %s: Not available."

524 NOTIFYMSG NOPARENT "upsmon parent dead, shutdown impossible."

Figure 71: Configuration file upsmon.conf for mgmt , part 3 of 5.

the default messages to something else if you like. The format is NOTIFYMSG event "message"

where %s is replaced with the identifier of the UPS in question. Note that program wall has
not been internationalized and does not support accented letters or non latin characters. When
the corresponding NOTIFYFLAG contains the symbol EXEC, upsmon also passes the message to the
program specified by NOTIFYCMD on line 510.

525 NOTIFYFLAG ONLINE EXEC

526 NOTIFYFLAG ONBATT EXEC

527 NOTIFYFLAG LOWBATT SYSLOG+WALL

528 NOTIFYFLAG REPLBATT SYSLOG+WALL

529 NOTIFYFLAG FSD SYSLOG+WALL

530 NOTIFYFLAG SHUTDOWN SYSLOG+WALL

531 NOTIFYFLAG COMMOK SYSLOG+WALL

532 NOTIFYFLAG COMMBAD SYSLOG+WALL

533 NOTIFYFLAG NOCOMM SYSLOG+WALL

534 NOTIFYFLAG NOPARENT SYSLOG+WALL

Figure 72: Configuration file upsmon.conf for mgmt , part 4 of 5.

Lines 525-534 declare what is to be done at each NOTIFY event. The declarations, known as
“flags” are shown in table 13. You may specify one, two or three flags for each event, in the form
FLAG[+FLAG]*, however IGNORE must always be alone.

Lines 525-526 carry only the EXEC flag: Since the heartbeat induces a lot of [online] and
[onbatt] traffic, the SYSLOG option would flood the log and WALL would put far too many useless
messages in xterm windows. When the NOTIFY event occurs, EXEC declares that upsmon should
call the program identified by the NOTIFYCMD on line 510.

Note that if you have multiple UPS’s, the same actions are to be performed for a given NOTIFY
event for all the UPS’s. Once again, we see that this is not good news.

When a UPS says that it needs to have its battery replaced, upsmon will generate a [replbatt]
NOTIFY event. Line 535 say that this happens every RBWARNTIME = 43200 seconds (12 hours).

Page 60 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

535 RBWARNTIME 43200

536 NOCOMMWARNTIME 300

537 FINALDELAY 5

Figure 73: Configuration file upsmon.conf for mgmt , part 5 of 5.

Line 536: Daemon upsmon will trigger a [nocomm] NOTIFY event after NOCOMMWARNTIME

seconds if it can’t reach any of the UPS entries in configuration file upsmon.conf. It keeps warning
you until the situation is fixed.

Line 537: When running in master mode, upsmon waits this long after sending the [shutdown]
NOTIFY event to warn the users. After the timer elapses, it then runs your SHUTDOWNCMD as
specified on line 364. If you need to let your users do something in between those events, increase
this number. Remember, at this point your UPS battery is almost depleted, so don’t make this too
big. Alternatively, you can set this very low so you don’t wait around when it’s time to shut down.
Some UPSs don’t give much warning for low battery and will require a value of 0 here for a safe
shutdown.

For lots and lots of details, see man upsmon.conf. See also the file config-notes.txt in the
distribution.

8.6 Configuration file upssched.conf for mgmt

Daemon upsmon in mgmt detects the NOTIFY events due to status changes in gold and mgmt
and for those flagged as EXEC in upsmon.conf calls upssched as indicated by the NOTIFYCMD directive.
The program upssched provides a richer set of actions than upsmon, especially the management of
timers.

On line 539 CMDSCRIPT points to a user script to be called for designated NOTIFY events. This
script will receive as argument the user chosen timer name.

Line 540 defines PIPEFN which is the file name of a socket used for communication between
upsmon and upssched. It is important that the directory be accessible to NUT software and
nothing else. For line 540 the Debian distribution uses /var/run/nut/upssched.pipe.

Daemon upsmon requires the LOCKFN declaration on line 541 to avoid race conditions. The
directory should be the same as PIPEFN.

8.6.1 UPS-3 on gold

Lines 543 and 544 say what is to be done by upssched for a NOTIFY event [onbatt] due to
UPS-3 on gold . On line 543 the START-TIMER says that upssched is to create and manage a timer
called “UPS-3-two-minute-warning-timer” which runs for 5 seconds. When this timer completes,
upssched calls the user script specified by CMDSCRIPT with argument “UPS-3-two-minute-warning
-timer”. Line 544 does a similar thing for the 125 second timer “UPS-3-shutdown-timer”.

Hopefully the back-up generator starts, and power returns before 2 minutes have gone by. Lines

Page 61 of 88

http://networkupstools.org/docs/man/upsmon.conf.html
https://github.com/networkupstools/nut/blob/master/docs/config-notes.txt

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

538 # upssched.conf -- mgmt --

539 CMDSCRIPT /usr/sbin/upssched-cmd

540 PIPEFN /var/lib/ups/upssched.pipe

541 LOCKFN /var/lib/ups/upssched.lock

542
543 AT ONBATT UPS-3@gold START-TIMER UPS-3-two-minute-warning-timer 5

544 AT ONBATT UPS-3@gold START-TIMER UPS-3-shutdown-timer 125

545 AT ONLINE UPS-3@gold CANCEL-TIMER UPS-3-two-minute-warning-timer

546 AT ONLINE UPS-3@gold CANCEL-TIMER UPS-3-shutdown-timer

547 AT ONLINE UPS-3@gold EXECUTE UPS-3-back-on-line

548
549 AT ONBATT UPS-2@gold START-TIMER UPS-2-two-minute-warning-timer 5

550 AT ONBATT UPS-2@gold START-TIMER UPS-2-shutdown-timer 125

551 AT ONLINE UPS-2@gold CANCEL-TIMER UPS-2-two-minute-warning-timer

552 AT ONLINE UPS-2@gold CANCEL-TIMER UPS-2-shutdown-timer

553 AT ONLINE UPS-2@gold EXECUTE UPS-2-back-on-line

554
555 AT ONBATT UPS-1@localhost START-TIMER UPS-1-two-minute-warning-timer 5

556 AT ONBATT UPS-1@localhost START-TIMER UPS-1-shutdown-timer 125

557 AT ONLINE UPS-1@localhost CANCEL-TIMER UPS-1-two-minute-warning-timer

558 AT ONLINE UPS-1@localhost CANCEL-TIMER UPS-1-shutdown-timer

559 AT ONLINE UPS-1@localhost EXECUTE UPS-1-back-on-line

560
561 AT ONBATT heartbeat@localhost CANCEL-TIMER heartbeat-failure-timer

562 AT ONBATT heartbeat@localhost START-TIMER heartbeat-failure-timer 660

Figure 74: Configuration file upssched.conf for mgmt .

545-547 say what is to be done by upssched for NOTIFY event [online]. The CANCEL-TIMER

declarations say that upssched must cancel the timers “UPS-3-two-minute-warning-timer” and
“UPS-3-shutdown-timer”. The user script is not called.

Line 547 command EXECUTE says that upssched is to call the user script immediately with the
argument “UPS-3-back-on-line”.

8.6.2 UPS-2 on gold

UPS-2 on gold is handled in exactly the same way as UPS-3. Lines 549 and 550 define the timers
which start when upssched receives a NOTIFY event [onbatt], and lines 551 and 552 cancel those
timers when hopefully upssched receives NOTIFY event [online].

Line 553 command EXECUTE says that upssched is to call the user script immediately with the
argument “UPS-2-back-on-line”.

Page 62 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

8.6.3 UPS-1 on mgmt

UPS-1 on mgmt is also handled in exactly the same way as UPS-3. Lines 555 and 556 define the
timers which start when upssched receives a NOTIFY event [onbatt], and lines 557 and 558 cancel
those timers when hopefully upssched receives NOTIFY event [online], however if power does not
return before two minutes have gone by, the timer “UPS-1-shutdown-timer” will complete and
upssched will call the user script with the parameter “UPS-1-shutdown-timer” .

Line 559 command EXECUTE says that upssched is to call the user script immediately with the
argument “UPS-1-back-on-line”.

8.6.4 heartbeat on mgmt

On line 561, when daemon upssched receives an [onbatt] it executes the command CANCEL-TIMER

heartbeat-failure-timer. This kills the timer. upssched does not call the user script.
Immediately afterwards, on line 562, and for the same [onbatt] event, upssched executes

command START-TIMER heartbeat-failure-timer 660 which restarts the heartbeat-failure

-timer which will run for another 660 sec, i.e. 11 minutes. If the timer completes, upssched will
call the user script upssched-cmd with parameter “heartbeat-failure-timer”.

8.7 User script upssched-cmd

563 #!/bin/bash -u

564 # upssched-cmd -- mgmt --

565 logger -i -t upssched-cmd Calling upssched-cmd $1

566
567 # Send emails to/from these addresses

568 EMAIL_TO="sysadmin@example.com"

569 EMAIL_FROM="upssched-cmd@${HOSTNAME:-nut}.example.com"

570
571 function make-STCH {

572 STCH="[$(upsc $1 ups.status)]:$(upsc $1 battery.charge)%"}

573 case $1 in

Figure 75: User script upssched-cmd on mgmt , 1 of 5.

The user script upssched-cmd, the example we show is in Bash, manages the completion of UPS-3
-two-minute-warning-timer, UPS-2-two-minute-warning-timer, UPS-1-two-minute-warning

-timer, UPS-3-shutdown-timer, UPS-2-shutdown-timer, UPS-1-shutdown-timer, UPS-3-back

-on-line, UPS-2-back-on-line, UPS-1-back-on-line and heartbeat-failure-timer.
There is no such thing as a single script which fits all industrial situations, but here is an example

of what can be done. You will probably need to modify this for your own use. Note that this script
could be written in the language of your choice, as long as the resulting program is able to receive

Page 63 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

the timer names as a parameter, send e-mails and log and notify the users of messages. Bash has
the advantage of being widely available and is understood by many sysadmins.

In figure 75, on lines 568 and 569, change the e-mail addresses to something that works for you.
Lines 571-572 declare a function which prepares a Bash variable STCH which gives the current

UPS status and battery charge. This is to be included in messages, so we get a clearer idea of what
is happening.

The bulk of the user script is a case statement beginning at line 573 covering all the possible
parameter values (timer names) that the user script may expect.

574 (UPS-3-two-minute-warning-timer) make-STCH UPS-3@gold

575 MSG="UPS-3: gold power failure. $STCH" ;;

576 (UPS-3-shutdown-timer) make-STCH UPS-3@gold

577 MSG="UPS-3: gold shutdown. $STCH" ;;

578 Commands for undisclosed device shutdown, e.g. saltstack
579 (UPS-3-back-on-line) make-STCH UPS-3@gold

580 MSG="UPS-3: power returns. $STCH" ;;

581 Case “UPS-2” is very similar

Figure 76: User script upssched-cmd on mgmt , 2 of 5.

In figure 76, lines 574-580 cover the events associated with UPS-3 on gold . When an [onbatt]
occurs the sysadmin receives wall and notify warnings that power to the undisclosed device has
failed, and that unless alternative power becomes available in two minutes, the undisclosed device
will be shut down. These warnings contain the text assembled in Bash variable MSG. Additionally,
when the [onbatt] occurs upssched begins a two minute timer UPS-3-shutdown-timer. If no
alternative power appears, and this timer expires, the installation specific code on line 578 will
shut down the undisclosed device attached to gold . This code might for example be based on the
saltstack remote management tools.

582 (UPS-1-two-minute-warning-timer) make-STCH UPS-1

583 MSG="UPS-1: gold power failure. $STCH" ;;

584 (UPS-1-shutdown-timer) make-STCH UPS-1

585 MSG="UPS-1: gold shutdown. $STCH" ;;

586 /usr/sbin/upsmon -c fsd ;;

587 (UPS-1-back-on-line) make-STCH UPS-1

588 MSG="UPS-1: power returns. $STCH" ;;

Figure 77: User script upssched-cmd on mgmt , 3 of 5.

In figure 77, lines 582-588 cover the events associated with UPS-1 on mgmt . When an [onbatt]
occurs the sysadmin receives wall and notify warnings that power to the management workstation
has failed, and that unless alternative power becomes available in two minutes, the workstation will

Page 64 of 88

https://docs.saltstack.com/en/latest/topics/index.html
https://docs.saltstack.com/en/latest/topics/index.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

be shut down. These warnings contain the text assembled in Bash variable MSG. Additionally, when
the [onbatt] occurs upssched begins a two minute timer UPS-1-shutdown-timer. If no alternative
power appears, and this timer expires, the code on line 586 will shut down the workstation.

589 (heartbeat-failure-timer) make-STCH heartbeat

590 MSG="NUT heart beat fails. $STCH" ;;

591 MSG1="Hello, upssched-cmd reports NUT heartbeat has failed."

592 MSG2="Current status: $STCH \n\n$0 $1"

593 MSG3="\n\n$(ps -elf | grep -E ’ups[dms]|nut’)"

594 echo -e "$MSG1 $MSG2 $MSG3" | /bin/mail -r "$EMAIL_FROM" \

595 -s "NUT heart beat fails. Currently $CHMSG" "$EMAIL_TO" ;;

Figure 78: User script upssched-cmd on mgmt , 4 of 5.

In figure 78, lines 589-595 cover the event associated with heartbeat on mgmt . The “heart-
beat” technique is discussed in detail in chapter 6. If the heartbeat-failure-timer completes
then something is wrong with NUT, and lines 591, 592 and 593 prepare a message for the sysadmin
in Bash variables MSG1, MSG2 and MSG3. Lines 594-595 e-mail the message to the sysadmin. The
message includes the current state of those NUT kernel processes which are operational.

596 (*) logger -i -t upssched-cmd "Bad arg: \"$1\", $CHMSG"

597 exit 1 ;;

598 esac

599 logger -i -t upssched-cmd $MSG

600 notify-send-all "$MSG"

Figure 79: User script upssched-cmd on mgmt , 5 of 5.

In figure 79, lines 596-597 cover any unexpected parameter values, and lines 599-600 log the
message and pass it to the system notification.

Page 65 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

8.8 The shutdown story

UPS-3 on gold : If UPS-3 detects that power has failed, and takes over the supply to the undisclosed

device, then the NUT setup will advise the system administrator on the mgmt workstation. If the

backup generator comes on automatically before two minutes, then the sysadmin on mgmt will

be informed, but if power does not re-appear, then script upssched-cmd in mgmt will remotely
command the “shutdown” of the undisclosed device. A complete shutdown may be impossible,
and all that can be done for some equipment is to put it into a quiescent state. The management
workstation mgmt is not shut down.

UPS-2 on gold : If UPS-2 detects that its own power supply has failed, and that it is now

powering gold , then the NUT setup of this chapter will advise the system administrator on the

mgmt workstation. With the example configuration, if power is not restored in two minutes

then an action in the script upssched-cmd will shut down both gold and the undisclosed device.

Workstation mgmt is not shut down.

UPS-1 on mgmt : If UPS-1 detects that its own power supply has failed, and the workstation
management is now on battery power, then we enter the scenario described in detail in chapter 7.
There is no need to shutdown the undisclosed device or gold . A backup workstation on a different
site could take over the management of UPS-3 and UPS-2.

Page 66 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

9 Encrypted connections

The configurations we have seen so far assume that the connection between the NUT client and
the NUT server is either in the same machine or over a local, well protected network. The client’s
password is transmitted in clear text to the server. This may be a reasonable risk locally, but is
not acceptable if client and server are connected by a public network or by a network deemed to
be at risk. This chapter looks at the technique for encrypting the traffic between client and server.

Management
"mgmt"client

connection
Internet
Encrypted

Remote system "gold"

port
3493

/etc/ups/keys/gold.pem

hic sunt dragones

upsd

CERTFILE

UPS−2
XT766

upsdrvctl

+ driver

upsc

upsrw

upscom

upsmon

CERTPATH

FORCESSL 1

CERTVERIFY 1

remote.fig

/etc/ups/certs

Figure 80: Encrypted connection to remote server using OpenSSL.

9.1 Waiting for NUT release 2.7.5

See NUT development Issues openssl 1.1 support #429, Add support for openssl-1.1.0 #504. and
./configure –with-openssl fails with OpenSSL 1.1, SSL library init now a macro #571 which are
still outstanding and will not be fixed until NUT version 2.7.5 at the earliest.

Meanwhile this chapter contains my raw notes on the subject: they were obtained using a
custom version of NUT rebuilt with OpenSSL 1.1. Rebuilding NUT is beyond the scope of this
tutorial. They have not been tested.

9.2 Warning for Debian users

This chapter uses the OpenSSL libraries for SSL/TLS support. The function is provided by NUT
but the Debian distribution has chosen to exclude OpenSSL saying “The OpenSSL licence taints
the GNU GPL”. This chapter has been developed using OpenSUSE 42.3 which includes OpenSSL
support.

Page 67 of 88

https://github.com/networkupstools/nut/issues/429
https://github.com/networkupstools/nut/issues/504
https://github.com/networkupstools/nut/issues/571

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

9.3 Introduction

SSL and the TLS that has replaced SSL are a quagmire of technical terms many of which are out-
of-date, confusing or incorrectly used. The OpenSSL project has produced a Swiss Army Knife8 of
utilities which are the best known tools for work in this area. Anyone venturing into this mess has
to do a lot of reading. Here is a very short list.

• The Network UPS Tools User Manual, chapter 9, Notes on securing NUT.

• The NUT man pages man upsd.conf and man upsmon.conf.

• The command openssl help followed by openssl command -help for details of the options
offered by the command tool.

• The openssl man page and it’s copious “See Also”.

• Ivan Ristić’s “A Short Guide to the Most Frequently Used OpenSSL Features and Commands”
available at web site feistyduck.com OpenSSL Cookbook.

• Web site digitalocean.com, OpenSSL Essentials: Working with SSL Certificates, Private Keys
and CSRs.

• Web site zytrax.com, Survival guides - TLS/SSL and SSL (X.509) Certificates.

• Website how2ssl.com, OpenSSL tips and common commands.

Here is a short summary of technical terms used in this chapter.

Certificate The public key used by clients to communicate with the server, with additional infor-
mation.

CRT An SSL certificate which in our case is self-signed. It contains the public key and looks like
this:
-----BEGIN CERTIFICATE-----

MIID3DCCAsSgAwIBAgIJAP1YdT7NA27mMA0GCSqGSIb3DQEBCwUAMIGCMQswCQYD

...

-----END CERTIFICATE-----

CSR A Certificate Signing Request contains the private key and the additional information needed to
build the certificate. A CSR is needed for public sites for which an expensive external service will
sign the certificate as authentic and valid (for some value of authentic and valid). Since a UPS units
are not a public matter, we sign our own certifiates.

KEY The private key. It looks like this:
-----BEGIN PRIVATE KEY-----

MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCw3bkc3NlA+2JH

...

-----END PRIVATE KEY-----

8I counted 48 tools in version 1.1.0f.

Page 68 of 88

https://networkupstools.org/docs/user-manual.chunked/ar01s09.html
http://networkupstools.org/docs/man/upsd.conf.html
http://networkupstools.org/docs/man/upsmon.conf.html
https://linux.die.net/man/1/openssl
https://www.feistyduck.com/library/openssl-cookbook/online/
https://www.digitalocean.com/community/tutorials/openssl-essentials-working-with-ssl-certificates-private-keys-and-csrs
https://www.digitalocean.com/community/tutorials/openssl-essentials-working-with-ssl-certificates-private-keys-and-csrs
http://www.zytrax.com/tech/survival/ssl.html
http://how2ssl.com/articles/openssl_commands_and_tips/

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

PEM An encoding format for a certificate which allows it to be included in “ascii” base 64 files. If you
are curious, the three letters PEM stand for Privacy-enhanced Electronic Mail.

The following configuration files are needed for encrypted communication between a remote
NUT server and management client.

• In the remote server, code name gold :

1. gold : The upsd daemon access control upsd.conf needs the additional CERTFILE
declaration: See chapter 9.6.

2. gold : New directory /etc/ups/keys will hold the SSL key files. Debian users might
use directory /etc/nut/keys.

• In each management client, code name mgmt :

1. mgmt : The upsmon daemon configuration upsmon.conf needs the additional CERT-
PATH, CERTVERIFY and FORCESSL declarations: See chapter 9.7.

2. mgmt : New directory /etc/ups/keys will hold the SSL key files. Debian users might
use directory /etc/nut/keys.

Page 69 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

9.4 Sniffing port 3493

Testing is essential to achieve the required level of security, and a key part of this testing is sniffing
the network to ensure that the connections to port 3493 on the NUT server gold are indeed
encrypted.

We use tcpdump on Debian for this testing. Other network sniffing software is available. The
first test is to see the clear text nature of the non-encrypted communication.

1. In the server, gold , or in the management client mgmt , run the command tcpdump -A port

nut as root.

2. In the management client mgmt , stop upsmon, and then restart it with the command
systemctl start nut-monitor.service.

3. tcpdump will display the trace shown in figure 81 which has been edited to make it easier to
read. Line 605 shows the client mgmt attempting to begin an encrypted session which is

refused by server gold on line 607. Line 611 shows the password transmitted in clear text.
Let this be a warning to you.

Lines 617-620: Client mgmt then makes a plain text request every 5 seconds for the status

of UPS-3 which the server gold then answers in plain text.

601 listening on wlan0, link-type EN10MB (Ethernet), capture size 262144 bytes

602 IP mgmt.33656 > gold.nut:

603 IP gold.nut > mgmt.33656:

604 IP mgmt.33656 > gold.nut:

605 IP mgmt.33656 > gold.nut: STARTTLS

606 IP gold.nut > mgmt.33656:

607 IP gold.nut > mgmt.33656: ERR FEATURE-NOT-CONFIGURED

608 IP mgmt.33656 > gold.nut:

609 IP mgmt.33656 > gold.nut: USERNAME upsmaster

610 IP gold.nut > mgmt.33656: OK

611 IP mgmt.33656 > gold.nut: PASSWORD sekret

612 IP gold.nut > mgmt.33656: OK

613 IP mgmt.33656 > gold.nut: LOGIN UPS-3

614 IP gold.nut > mgmt.33656: OK

615 IP mgmt.33656 > gold.nut: MASTER UPS-3

616 IP gold.nut > mgmt.33656: OK MASTER-GRANTED

617 IP mgmt.33656 > gold.nut: GET VAR UPS-3 ups.status

618 IP gold.nut > mgmt.33656: VAR UPS-3 ups.status "OL"

619 IP mgmt.33658 > gold.nut:

620 IP mgmt.33656 > gold.nut: GET VAR UPS-3 ups.status

621 IP gold.nut > mgmt.33656: VAR UPS-3 ups.status "OL"

Figure 81: tcpdump of systemctl start nut-monitor.service without encryption.

Page 70 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

9.5 Creating the SSL keys with OpenSSL

1. On gold , create a directory associated with NUT in which to build the keys. Since we use
openSUSE, we will create a keys subdirectory of the server configuration directory /etc/ups.
Debian sysadmins use /etc/nut. See lines 623-624. Note the ownership of directory keys.

622 root@gold ~ # cd /etc/ups

623 root@gold /etc/ups # mkdir keys

624 root@gold /etc/ups # chown root:nut keys

625 root@gold /etc/ups # cd keys

626 root@gold /etc/ups/keys # openssl req \

627 > -newkey rsa:2048 -nodes -keyout gold.key \

628 > -x509 -days 3650 -out gold.crt

629 Generating a 2048 bit RSA private key

630+++

631+++

632 writing new private key to ’gold.key’

633 -----

634 You are about to be asked to enter information that will be incorporated

635 into your certificate request.

636 What you are about to enter is what is called a Distinguished Name or a DN.

637 There are quite a few fields but you can leave some blank

638 For some fields there will be a default value,

639 If you enter ’.’, the field will be left blank.

640 -----

641 Country Name (2 letter code) [AU]:FR

642 State or Province Name (full name) [Some-State]:.

643 Locality Name (eg, city) []:.

644 Organization Name (eg, company) [Internet Widgits Pty Ltd]:Roger Price

645 Organizational Unit Name (eg, section) []:IT operations

646 Common Name (e.g. server FQDN or YOUR name) []:gold.example.com

647 Email Address []:sysadmin@example.com

Figure 82: Call openssl req to create the self-signed certificate.

2. We cd into the keys subdirectory of the server configuration, and proceed to build a self-
signed certificate. On line 626, the command openssl req instructs the OpenSSL tool req
to manage Certificate Signing Requests (CSR). The remaining options are specific to CSR
management.

On line 627, option -newkey rsa:2048 calls for a new private key of length 2048 bits. Option
-nodes says that there is no pass-phrase to encrypt the output key. The absence of a pass-
phrase makes it possible to start the service automatically without having to type the pass-
phrase. Option -keyout gold.key says where the private key is to be stored.

Page 71 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

On line 628, option -x509 calls for openssl req to output an X509 structure instead of a
certificate signing request (CSR). This is equivalent to saying “output a self-signed certificate”.
Option -days 3560 says that the certificate is to be valid for almost 10 years. Option -out

gold.crt says in which file the certificate goes.

3. The openssl command on line 626 produces the two files in directory /etc/ups/keys shown
on lines 648 and 649. The ownership and permissions are too restrictive for NUT which is
executed by user nut so we modify them as shown

648 -rw-r--r-- 1 root root 1399 Jun 30 16:35 gold.crt

649 -rw------- 1 root root 1704 Jun 30 16:29 gold.key

Figure 83: The files produced by openssl req.

9.5.1 Create unique name for certificate using OpenSSL

Later, when installing the certificate (public key) on mgmt , we will need a unique name for this

file. We create this name now on gold using the openssl x509 tool.

650 root@gold /etc/ups/keys # openssl x509 -hash -noout -in gold.crt

651 55f02c51

Figure 84: Create unique name for certificate file.

The file name will be 55f02c51.0

9.6 Install NUT server keys on gold

The upsd server on gold requires that the certificate and the private key generated by openssl be
in one single file. This file must have ownership and permissions which prevent public access, but
just allow upsd to read the file. We proceed as follows:

652 root@gold /etc/ups/keys # cat gold.crt gold.key > gold.pem

653 root@gold /etc/ups/keys # chown root:nut gold.pem

654 root@gold /etc/ups/keys # chmod 0640 gold.pem

655 root@gold /etc/ups/keys # ls -alF gold.pem

656 -rw-r----- 1 root nut 3103 Jul 1 08:56 gold.pem

Figure 85: The combined file required by upsd on gold .

Line 660 extends the file upsd.conf on gold to include a CERTFILE declaration which points
to gold.pem created on line 652.

Page 72 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

657 # upsd.conf

658 LISTEN 127.0.0.1 3493

659 LISTEN ::1 3493

660 CERTFILE /etc/ups/keys/gold.pem

Figure 86: CERTFILE declaration to be added to upsd.conf on gold .

9.7 Install NUT management client keys on mgmt

1. On mgmt , create a directory associated with NUT in which to store the certificate (public
key). Since we use openSUSE, we will create a certs subdirectory of the server configuration
directory /etc/ups. Debian sysadmins use /etc/nut. See lines 662-663. Note the ownership
of directory certs.

661 root@mgmt ~ # cd /etc/ups

662 root@mgmt /etc/ups # mkdir certs

663 root@mgmt /etc/ups # chown root:nut certs

664 root@mgmt /etc/ups # cd certs

665 root@mgmt /etc/ups/certs # sftp gold:/etc/ups/keys/gold.crt gold.crt

666 root@gold’s password:

667 Connected to gold.

668 Fetching /etc/ups/keys/gold.crt to gold.crt

669 /etc/ups/keys/gold.crt 100% 1399 183.6KB/s 00:00

670 root@mgmt /etc/ups/certs # chown root:nut gold.crt

671 root@mgmt /etc/ups/certs # ls -alF gold.crt

672 -rw-r--r-- 1 root nut 1399 Jul 3 15:17 gold.crt

673 root@mgmt /etc/ups/certs # ln -s gold.crt 55f02c51.0

674 root@mgmt /etc/ups/certs # ls -alF 55f02c51.0

675 lrwxrwxrwx 1 root root 9 Jul 3 16:56 55f02c51.0 -> gold.crt

Figure 87: Copy certificate to mgmt and rename file.

2. Line 665: copy the certificate (public key) from gold to mgmt . Line 670 corrects the
ownership.

3. Line 673: apply the unique name 55f02c51.0 generated on line 650 to the file gold.cert.

4. Add a CERTPATH declaration to upsmon.conf. Here is figure 69 modified with additional
CERTPATH, CERTVERIFY and FORCESSL declarations on lines 681-683.

Page 73 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

676 # upsmon.conf -- mgmt --

677 MONITOR UPS-3@gold 0 upsmaster sekret master

678 MONITOR UPS-2@gold 0 upsmaster sekret master

679 MONITOR UPS-1@localhost 1 upsmaster sekret master

680 MONITOR heartbeat@localhost 0 upsmaster sekret master

681 CERTPATH /etc/ups/certs

682 CERTVERIFY 1

683 FORCESSL 1

684 MINSUPPLIES 1

Figure 88: Configuration file upsmon.conf for mgmt , with CERTFILE.

9.8 Testing the TLS setup

On gold restart upsd with command systemctl restart nut-server.service and then com-
mand systemctl status nut-server.service . The report should show

685 nut-server.service - Network UPS Tools - power devices information server

686 Loaded: loaded (/usr/lib/systemd/system/nut-server.service; enabled;..)

687 Active: active (running) since Sat 2018-07-07 11:01:40 CEST; 51min ago

688 Process: 2923 ExecStart=/usr/sbin/upsd (code=exited, status=0/SUCCESS)

689 Main PID: 2926 (upsd)

690 Tasks: 1 (limit: 512)

691 CGroup: /system.slice/nut-server.service

692 _2926 /usr/sbin/upsd

693
694 ... upsd[2923]: listening on 0.0.0.0 port 3493

695 ... upsd[2923]: Connected to UPS [UPS-2]: usbhid-ups-UPS-2

696 ... upsd[2923]: Connected to UPS [UPS-3]: usbhid-ups-UPS-3

697 ... upsd[2926]: Startup successful

698 ... systemd[1]: Started Network UPS Tools - power device information server

699 ... upsd[2926]: User upsmaster@gold logged into UPS [UPS-2] (SSL)

700 ... upsd[2926]: User upsmaster@gold logged into UPS [UPS-3] (SSL)

Figure 89: Restarting upsd on gold with SSL/TLS enabled.

On mgmt restart NUT with command systemctl restart nut-monitor.service and then
command systemctl status nut-monitor.service . The report should show

Lines 712-715 show that the upsmon connections are SSL/TLS encrypted. Line 718 shows the
heartbeat in action.

Page 74 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

701 nut-monitor.service - Network UPS Tools - power device monitor and shutdown

702 Loaded: loaded (/usr/lib/systemd/system/nut-monitor.service; enabled;..)

703 Active: active (running) since Sat 2018-07-07 11:01:40 CEST; 51min ago

704 Process: 2927 ExecStart=/usr/sbin/upsmon (code=exited, status=0/SUCCESS)

705 Main PID: 2931 (upsmon)

706 Tasks: 3 (limit: 512)

707 CGroup: /system.slice/nut-monitor.service

708 |-2930 /usr/sbin/upsmon

709 |-2931 /usr/sbin/upsmon

710 _3591 /usr/sbin/upssched UPS heartbeat@localhost: On battery

711
712 ... upsmon[2931]: Connected to gold in SSL

713 ... upsmon[2931]: Connected to gold in SSL

714 ... upsmon[2931]: Connected to localhost in SSL

715 ... upsmon[2931]: Connected to localhost in SSL

716 ... upssched[3591]: Timer daemon started

717 ... upssched[3591]: New timer: heartbeat-failure-timer (1320 seconds)

718 ... upssched[3591]: Cancelling timer: heartbeat-failure-timer

719 ... upssched[3591]: New timer: heartbeat-failure-timer (1320 seconds)

Figure 90: Restarting upsmon on mgmt with SSL/TLS enabled.

Page 75 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

9.9 What can Debian users do?

Debian users have a choice:

1. Rebuild NUT with the ./configure option --with-openssl Rebuilding NUT is beyond the
scope of this tutorial. See NUT issue 571.

2. Use the NSS support which is included in the Debian NUT package. See Mozilla Network
Security Services (NSS). See also NUT issue 572.

9.9.1 Debian: Create NSS database on gold

The NSS instructions given in the Network UPS Tools User Manual, chapter 9, Notes on securing
NUT correspond to earlier versions of NSS. We choose to use the current version and to base the
setup on key creation done with OpenSSL, so the instructions here differ from those in the NUT
User Manual.

connection
Internet
Encrypted

Management
"mgmt"client

Remote system "gold"

port
3493

/etc/nut/NSS_db

dragones

hic

sunt

upsd

CERTPATH
CERTIDENT

gold sekret

UPS−2
XT766

upsdrvctl

+ driver

upsc

upsrw

upscom

upsmon

CERTHOST gold gold 1 1remote.fig

Figure 91: Encrypted connection to remote server using NSS.

There are two different forms for the NSS database: the legacy databases (cert8.db, key3.db,
and secmod.db) and new SQLite databases (cert9.db, key4.db, and pkcs11.txt). These are
identified by the prefixes sql: for the newer database and dbm: for the legacy database. NUT
2.7.4 does not provide a means of specifying the sql: prefix and does not support use of the newer
sql: database.

We refer to these three databases collectively as the NSS database, which must be created on
those Debian boxes which act as gold and mgmt , before certificates or keys can be imported and
managed.

gold : Line 721: You will need package libnss3-tools for program certutil which creates
the (initially empty) databases. Note the dbm: prefix which must be placed before all database
references, and the weak approach to security shown by the --empty-password option.

Line 724 shows the ownership and permissions of the databases.

Page 76 of 88

https://github.com/networkupstools/nut/issues/571
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://github.com/networkupstools/nut/issues/572
https://networkupstools.org/docs/user-manual.chunked/ar01s09.html
https://networkupstools.org/docs/user-manual.chunked/ar01s09.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

720 root@gold /etc/nut # mkdir NSS_db

721 root@gold /etc/nut # certutil -N -d dbm:NSS_db --empty-password

722 root@gold /etc/nut # chown -R root:nut NSS_db/

723 root@gold /etc/nut # chmod -R 640 NSS_db/

724 root@gold /etc/nut # ls -alF NSS_db/

725 drw-r----- 2 root nut 4096 Jul 8 12:40 .

726 drwxr-xr-x 5 root nut 4096 Jul 8 12:40 ../

727 -rw-r----- 1 root nut 65536 Jul 8 12:40 cert8.db

728 -rw-r----- 1 root nut 16384 Jul 8 12:40 key3.db

729 -rw-r----- 1 root nut 16384 Jul 8 12:40 secmod.txt

Figure 92: Creating the NSS databases on gold .

9.9.2 Debian: Add OpenSSL keys and certificates to NSS database on gold

The certutil tool is capable of many operations needed to create and manage certificates and
keys, but we choose to use OpenSSL to build ours which we then import into the NSS database.

gold : Line 730: Use tool openssl pkcs12 to export the private key gold.key to a PKCS#12
file gold.p12 for NSS to import. Note the option -name gold which specifies the private key’s
nickname. On line line 733 tool pk12util imports the private key from file gold.p12 into the NSS
database.

730 root@gold /etc/nut # openssl pkcs12 -export -inkey ./keys/gold.key \

-in ./keys/gold.crt -out ./keys/gold.p12 -name gold

731 Enter Export Password: sekret
732 Verifying - Enter Export Password: sekret
733 root@gold /etc/nut # pk12util -i ./keys/gold.p12 -d dbm:NSS_db

734 Enter password for PKCS12 file: sekret
735 pk12util: PKCS12 IMPORT SUCCESSFUL

Figure 93: Import private key to NSS database on gold .

Now we have the private key in the NSS database, we also need the public key, i.e. the certificate.
Line 736: Use tool openssl x509 to export the certificate (public key) in gold.pem to a DER

format file gold.der for NSS to import. On line 737 tool certutil -A adds the certificate in file
gold.der to the NSS database with option -t "C,," declaring that the certicate is trusted for
client authentification on an SSL server, option -v 120 declaring that the certificate is valid for 10
years, and option -n "gold" specifying a nickname for the certificate.

Line 741 extends the file upsd.conf on gold to include a CERTPATH declaration which points to
the NSS database. Line 742 identifies the certificate to be sent to clients and the password needed
to decrypt the private key associated with the certificate, see line 734.

Page 77 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

736 root@gold /etc/nut # openssl x509 -outform der \

-in ./keys/gold.pem -out ./keys/gold.der

737 root@gold /etc/nut # certutil -A -d dbm:NSS_db -t "C,," \

-v 120 -n "gold" -i ./keys/gold.der

Figure 94: Import certificate (public key) to NSS database on gold .

738 # upsd.conf -- gold -- for Debian

739 LISTEN 127.0.0.1 3493

740 LISTEN ::1 3493

741 CERTPATH /etc/nut/NSS_db

742 CERTIDENT "gold.example.com" sekret

Figure 95: NSS CERTPATH declaration for upsd.conf on gold .

9.9.3 Debian: Check and display NSS database on gold

We check the private key and certificate (public key) in the NSS database. See figure 96.
gold : Line 743: certutil -V checks the validity of a certificate, with the option -n gold

giving the nickname of the key as defined on line 730, and option -u V declaring that the certificate
is for use as an SSL server.

Line 745: certutil -K lists the contents of the key database. The key ID is df7b... with
nickname gold as defined on line 730.

Line 748: certutil -L lists the certificates in the database. Specify nickname gold to get full
detail for that certificate.

9.9.4 Debian: Create NSS database on mgmt

The process of creating the NSS database on mgmt is the same as on gold .
However file upsmon.conf requires specific attention.

9.9.5 Debian: Testing the NSS setup

On gold restart upsd with command systemctl restart nut-server.service and then com-
mand systemctl status nut-server.service . The report should show

On mgmt restart NUT with command systemctl restart nut-monitor.service and then
command systemctl status nut-monitor.service . The report should show

Page 78 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

743 root@gold /etc/nut # certutil -V -d dbm:NSS_db -n gold -u V

744 certutil: certificate is valid

745 root@gold /etc/nut # certutil -K -d dbm:NSS_db

746 certutil: Checking token "NSS Certificate DB" in slot

"NSS User Private Key and Certificate Services"

747 < 0> rsa df7b376946c8cfe59d74095dfc4b882d081b981b gold

748 root@gold /etc/nut # certutil -L -d dbm:NSS_db -n gold

749 Certificate:

750 Data:

751 Version: 3 (0x2)

752 Serial Number:

753 00:fd:58:75:3e:cd:03:6e:e6

754 Signature Algorithm: PKCS #1 SHA-256 With RSA Encryption

755 Issuer: "E=sysadmin@rogerprice.org,CN=maria.rogerprice.org,

756 OU=IT operations,O=Roger Price,C=FR"

757 Validity:

758 Not Before: Sat Jun 30 14:35:24 2018

759 Not After : Tue Jun 27 14:35:24 2028

760 ...

Figure 96: Check and display certificate and private key on gold .

761 # upsmon.conf -- mgmt -- for Debian

762 MONITOR UPS-3@gold 0 upsmaster sekret master

763 MONITOR UPS-2@gold 0 upsmaster sekret master

764 MONITOR UPS-1@localhost 1 upsmaster sekret master

765 MONITOR heartbeat@localhost 0 upsmaster sekret master

766 CERTHOST gold gold.example.com 1 1

767 CERTVERIFY 1

768 FORCESSL 1

769 MINSUPPLIES 1

Figure 97: NSS CERTHOST declaration for upsmon.conf on mgmt .

Page 79 of 88

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

10 Acknowledgments

Editor: As one of the many who have used the work of the NUT project as part of their system
setup, I would like to express my gratitude and my appreciation for the software that the NUT
project has made available to system administrators through contributions by Charles Lepple, Arjen
de Korte, Arnaud Quette, Russell Kroll, and many others in the nut-upsuser mailing list.

I would also like to thank those who commented on early versions of this text.

11 Errors, omissions, obscurities, confusions, typpos...

Joe’s server will still be allright

if power drops off in the night.

That 8 year old pack

of battery back-

up will easily handle th connection lost

Please signal errors, omissions, typso and all the
other problems you find in this document in the
“ups-user” mailing list9. Thank you.

9See mailing list administration at https://lists.alioth.debian.org/mailman/listinfo/nut-upsuser

Page 80 of 88

https://lists.alioth.debian.org/mailman/listinfo/nut-upsuser

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

Appendix

A Starting NUT

770 # nut.conf

771 # No spaces around the "="

772 MODE=standalone

Figure 98: Configuration file nut.conf.

This chapter discusses the techniques used to start
the NUT software. Each distribution has it’s own
view of how this is to be done, so you should review
the systemd service units involved and the scripts
that they call.

The NUT software contains several daemons
which need to be started to offer the promised NUT service. These daemons are

Daemon systemd service unit Notes

driver nut-driver.service One or more driver daemons as specified in file
ups.conf. This service unit is started by sys-
temd whenever nut-server.service starts.

upsd nut-server.service The central daemon which maintains the ab-
stracted view of the UPS units.

upsmon nut-monitor.service The monitor daemon specifies what is to be done
for NOTIFY events.

upssched none For activity such as the heartbeat, the timed
action daemon is called by the upssched-cmd
script specified by the NOTIFYCMD command in
upsmon.conf.

Figure 99: Daemons used by NUT.

Configuration file nut.conf specifies which of these daemons the operating system should start,
but distributions often ignore the file. The distribution choice is normally correct for a standalone
workstation protected by a single UPS, but for more complex situations, you need to review what
your distribution does. See chapter 8.1 and man nut.conf.

Strictly speaking, this file is not for NUT, but for the process which starts NUT. The initial-
ization process is expected to source this file to know which parts of nut are to be started. Some
distributions, e.g. openSUSE, ignore nut.conf and start the three NUT layers driver, upsd and
upsmon. They assume that MODE=standalone. Note that there is no space around the “=” since it
is assumed that shell scripts such as Debian’s /sbin/upsd source this file.

The possible MODE values are:

Page 81 of 88

http://networkupstools.org/docs/man/nut.conf.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

• MODE=none Indicates that NUT should not get started automatically, possibly because it
is not configured or that an Integrated Power Management or some external system, is used
to start up the NUT components. If you enable nut-server.service Debian 10 will display
the message:

upsd disabled, please adjust the configuration to your needs. Then set MODE to
a suitable value in /etc/nut/nut.conf to enable it.

Enabling nut-monitor.service will produce a similar message11.

• MODE=standalone This is the most common situation in which line 770 in figure 98 declares
that NUT should be started in the “standalone” mode suitable for a local only configuration,
with 1 UPS protecting the local system. This implies starting the 3 NUT layers, driver, upsd
and upsmon and reading their configuration files.

• MODE=netserver Like the standalone configuration, but may possibly need one or more
specific LISTEN directive(s) in upsd.conf. Since this MODE is open to the network, a special
care should be applied to security concerns. Debian accepts starting upsmon in this mode.

• MODE=netclient When only upsmon is required, possibly because there are other hosts
that are more closely attached to the UPS, the MODE should be set to netclient. If you enable
Debian’s systemd service unit nut-server.service with this mode, then you will get the
same message as for MODE=none.

However these alternate modes are merely wishful thinking if your distribution ignores file
nut.conf. There are other options, see man nut.conf.

10See script /sbin/upsd.
11See script /sbin/upsmon.

Page 82 of 88

http://networkupstools.org/docs/man/nut.conf.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

B Stopping NUT

B.1 Delayed UPS shutdown with NUT script

We saw in chapter 2, line 45, that the upsmon.conf SHUTDOWNCMD directive specifies the command
to be used to shut down the system, but what about the UPS which must keep supplying power
while the system shuts down? Does the UPS also shut down?, and if so, how?

Chapter 2.5 explains that somewhere in your distribution, as part of the system shutdown
process, there needs to be an action to send a message to the UPS to tell it that some time later,
it too will shut down. The notion of “shutdown” for a UPS unit is subtle. What shuts down is the
supply of power to the power outlets. The UPS unit cuts off the equipment for which it provides
battery backup. When this happens you may hear the audible “clunk” of the relays. The unit may
also act as a power strip with surge protection, but those outlets are not covered by the protection
afforded by the battery.

Note that the UPS does not shutdown at the same time as the system it protects. The UPS
shutdown is delayed. By default the delay is 20 seconds. See line 77 if you want to change this.

The delayed UPS shutdown command may be from a shell script or a systemd service unit, but
in all cases the key element is the command upsdrvctl shutdown.

The NUT project provides a sample script, which is to be placed in a directory of things to be
done at the end of the system shutdown. This depends on the distribution.

The openSUSE distribution places the delayed shutdown script provided by NUT and shown
in figure 100 in file /usr/lib/systemd/system-shutdown/nutshutdown . The Debian distribution
places the script in file /lib/systemd/system-shutdown/nutshutdown .

773 #!/bin/sh

774 /usr/sbin/upsmon -K >/dev/null 2>&1 && /usr/sbin/upsdrvctl shutdown

Figure 100: UPS shutdown script nutshutdown.

On line 774 the call to upsmon with option -K checks the POWERDOWNFLAG defined by line 46.
The upsmon daemon creates this file when running in master mode whenever the UPS needs to be
powered off. See man upsmon.conf for details. If the check succeeds, we are free to call upsdrvctl to
shut down the UPS’s. Note that if you have multiple UPS’s, the command upsdrvctl shutdown

will shut them all down. If you have say three UPS’s, UPS-1, UPS-2 and UPS-3, and you want to
shut down just UPS-2 and UPS-3, then you should specify those UPS’s as shown in line 776.

775 #!/bin/sh

776 /usr/sbin/upsmon -K >/dev/null 2>&1\

&& /usr/sbin/upsdrvctl shutdown UPS-2\

&& /usr/sbin/upsdrvctl shutdown UPS-3 # openSUSE

Figure 101: UPS shutdown script nutshutdown for 2 of 3 UPS’s.

See also man upsdrvctl

Page 83 of 88

http://networkupstools.org/docs/man/upsmon.conf.html
http://networkupstools.org/docs/man/upsdrvctl.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

B.2 Delayed UPS shutdown with a systemd service unit

The script provided by the NUT project in chapter B.1 is executed very late in the shutdown
sequence, when it is no longer possible to log the action. If you think that power management is
a critical operation and that all critical operations should be logged, then you will need to call for
the delayed UPS shutdown earlier in the system shutdown sequence when logging is still possible.
This can be done using the systemd service unit shown in figure 102.

777 # nut-delayed-ups-shutdown.service

778 [Unit]

779 Description=Initiate delayed UPS shutdown

780 Before=umount.target

781 DefaultDependencies=no

782 [Service]

783 Type=oneshot

784 ExecStart=/usr/bin/logger -t nut-delayed-ups-shutdown\

"upsdrvctl shutting down UPS"
785 ExecStart=/sbin/upsdrvctl shutdown # Debian

786 [Install]

787 WantedBy=final.target

Figure 102: UPS shutdown service unit nut-delayed-ups-shutdown.service.

The ExecStart directive on line 785 will shutdown 12 all the UPS units managed by this system.
The code given is for Debian: other distributions put upsdrvctl elsewhere. If you have say three
UPS’s, UPS-1, UPS-2 and UPS-3, and you want to shut down just UPS-2 and UPS-3, then instead
of line 785 you should specify the required UPS’s as shown in lines 788-789.

788 ExecStart=/sbin/upsdrvctl shutdown UPS-2 # Debian

789 ExecStart=/sbin/upsdrvctl shutdown UPS-3

Note that this service unit does not perform the upsmon -K test for the POWERDOWNFLAG.
The position of this service unit may vary from one distribution to another, see section “unit file

load path” in man systemd.unit. For example in the openSUSE and Debian distributions, /etc
/systemd/system is for a user’s scripts, and /usr/lib/systemd/system-shutdown is for system
scripts. You might use the /etc/systemd/system directory if your script is not part of an officially
distributed product.

If you install or change this service unit, run command systemctl --system reenable /etc/

systemd/system/nut-delayed-ups-shutdown.service . Maybe your distribution offers a graph-
ical manager to do this.

For gory details see the systemd documentation. There are over 200 man pages starting with an
index. For details of the directories used, see section “unit file load path” in man systemd.unit.

12The upsdrvctl program is normally a frontend to the drivers, but in the case of the shutdown option upsdrvctl
does not use the existing driver; it creates a new driver for itself.

Page 84 of 88

https://www.freedesktop.org/software/systemd/man/systemd.unit.html
https://www.freedesktop.org/software/systemd/man/systemd.unit.html
https://www.freedesktop.org/software/systemd/man/
https://www.freedesktop.org/software/systemd/man/
https://www.freedesktop.org/software/systemd/man/systemd.unit.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

C Using notify-send

The program “wall” used by NUT to put notifications in front of the users is now well past it’s
best-before date and hardly fit for purpose. It has not been internationalized, does not support
accented letters or non-latin characters, and is ignored by popular desktop environments such as
Xfce, Gnome and KDE. It’s apparent replacement notify-send gives the impression that it has never
been tested in any other than the simplest cases, and that it is not ready for industrial strength
use. Getting notify-send to work with NUT is not immediately evident, so although notify-send is
not a part of NUT, we discuss this problem here.

C.1 What’s wrong with notify-send?

The program notify-send is part of a set of programs which implement the Gnome “Desktop Noti-
fications Specification”. The introduction says:

� This is a draft standard for a desktop notifications service, through which appli-
cations can generate passive popups to notify the user in an asynchronous manner of
events. ... Example use cases include:

• Scheduled alarm

• Low disk space/battery warnings ... �

From this introduction it would seem that desktop notifications are exactly what is needed to
present [ol]→[ob] and [ob]→[ob lb] warnings to the users, but unfortunately, things are not that
simple.

Program notify-send is a utility which feeds message objects to a message server, such as
notifyd. Taking the Xfce desktop environment as an example, Xfce provides it’s message server
called xfce4-notifyd. None of these programs has a man page and the editor has not been able
to find a mailing list specific to desktop notifications.

Experience shows that just calling notify-send in the script upssched-cmd does not work. The
message simply disappears. Closer examination on the openSUSE distribution with command ps

-elf | grep ups shows that if daemon upsmon running as user “upsd” calls notify-send to present
a message, the notify daemon is launched with the same userid “upsd” as the caller. In Debian
NUT runs as user “nut” and the notify daemon is launched with the name userid “nut”. Users
such as “upsd” and “nut” do not have access to the desktop environment.

If a caller is the upsmon daemon which has no access to the desktop environment, then neither
will the corresponding notification daemon. This is surprising. One would expect a design closer to
that of the printer daemon cupsd which runs permanently in the background receiving files to be
printed. There is only one daemon cupsd and that daemon isolates the user from needing to know
how to drive printers.

To get the message to show on the user’s screen appears to require two actions:

1. Give user “upsd” (“nut” on Debian) the right to act as any user,

Page 85 of 88

https://developer.gnome.org/notification-spec/
https://developer.gnome.org/notification-spec/

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

2. Search for logged in users, and for each user construct the user’s environment variable DISPLAY,
and call utility notify-send as that user to notify the user.

C.2 Give user “upsd” (“nut”) the right to act as any user

To improve security in NUT, the upsd and upsmon daemons is not executed as root, but rather as
a non-root userid. This userid is typically called “upsd” or “nut”. We will use the name “upsd”.
“upsd” is not a regular user and does not have the access to the X-server needed to display data.
This is a problem for the notification service, which we now fix.

Add the following lines to the file /etc/sudoers

790 # Host alias specification

791 Host_Alias LAN = 10.218.0/255.255.255.0,127.0.0.1,localhost,gold

792
793 uspd LAN = (ALL) NOPASSWD:SETENV: /usr/bin/notify-send

Figure 103: Modifications to file /etc/sudoers

Line 791 corresponds to the editor’s system and should be adapted to your setup.
On line 793 the directive SETENV: is needed for openSUSE but optional for Debian.
The file /etc/sudoers contains the following warning:

This file MUST be edited with the ’visudo’ command as root. Failure to use ’visudo’
may result in syntax or file permission errors that prevent sudo from running.

See man sudoers and man visudo. The un-l33t do not have to use vi. Luckily, the command
VISUAL=/usr/bin/emacs visudo -f /etc/sudoers also does the job.

Page 86 of 88

https://www.sudo.ws/man/1.8.13/sudoers.man.html
https://www.sudo.ws/man/1.8.13/visudo.man.html

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

C.3 Search for and notify logged in users

Figure 104 shows a Bash script notify-send-all which can be used in place of notify-send to send
messages from upssched-cmd to all the X display users currently logged in. Script notify-send-all
accepts as argument the message to be displayed. The message will be displayed indefinitely as
“critical”. The editor places the script in file /usr/local/bin/notify-send-all.

794 #! /bin/bash -u

795 # notify-send-all sends notifications to all X displays

796 # Assumes /etc/sudoers allows caller to sudo as any user.

797 # E.g. nut LAN = (ALL) NOPASSWD:SETENV: /usr/bin/notify-send

798 # Call with text to be displayed as argument.

799 XUSERS=($(who | grep -E "\(:[0-9](\.[0-9])*\)" \

800 | awk ’{print 1NF}’ | sort -u))

801 for XUSER in $XUSERS # E.g. jschmo(:0)

802 do NAME=(${XUSER/\(/ }) # Insert space, make NAME an array

803 DISPLAY=${NAME[1]/)/} # E.g. :0

804 sudo -u ${NAME[0]} DISPLAY=${DISPLAY} \

805 /usr/bin/notify-send -t 0 -u critical "$@"; RC=$?

806 if [[$RC -ne 0]]; then exit $RC; fi

807 done

Figure 104: Bash script notify-send-all

Line 799 produces a Bash array of all the users identified by who who have X displays. Each
item in the array corresponds to a logged in user with an X display and is of the form jschmo(:0).

For each user logged in with an X display, line 802 creates a Bash array containing the user
name and the X display number in the form jschmo :0).

Line 803 extracts the X display number :0 and on line 804 calls notify-send to notify the user as
if user “upsd” (“nut” on Debian) was that logged in user. Note that environment variable DISPLAY

is set for that user.
See the discussion “Show a notification across all running X displays” on the stackexchange

site.

C.4 Testing the notify-send-all setup

A simple way of testing the use of notify-send if you are using the chapter 4 configuration is to
simply disconnect the wall power for 10 seconds. This is sufficient to provoke upsmon into calling
upssched-cmd which in turn calls notify-send-all as shown at line 200.

While wall power is disconnected, use a command such as ps -elf | grep -E "ups[dms]|nut"

to find the programs running as user “upsd” (“nut” on Debian):

Page 87 of 88

https://unix.stackexchange.com/questions/2881/show-a-notification-across-all-running-x-displays
https://unix.stackexchange.com/questions/2881/show-a-notification-across-all-running-x-displays

NUT 2.7.4, ConfigExamples.A5.pdf, version 2019-07-218

808 upsd 2635 1 ... /usr/bin/usbhid-ups -a Eaton

809 upsd 2637 1 ... /usr/bin/dummy-ups -a heartbeat

810 upsd 2641 1 ... /usr/sbin/upsd

811 root 2645 1 ... /usr/sbin/upsmon

812 upsd 2646 2645 ... /usr/sbin/upsmon

813 upsd 3217 1 ... /usr/sbin/upssched UPS Eaton@localhost: On battery

814 upsd 3236 1 ... dbus-launch --autolaunch=d1cd...ca5d2 ...
815 upsd 3237 1 ... /bin/dbus-daemon --fork --print-pid 5 ...
816 upsd 3241 1 ... /usr/lib/xfce4/notifyd/xfce4-notifyd

817 upsd 3243 1 ... /usr/lib/xfce4/xfconf/xfconfd

Lines 808-813 are due to NUT activity, and lines 814-817 are due to the use of notify-send. Note
on line 816 that the xfce4-notifyd daemon is running as user “upsd”!

C.5 References for notify-send

1. For a suggestion of how to send notifications on an Apple Mac, see the posting by Robbie
van der Walle, Sun Jun 11 11:27:55 UTC 2017, in the nut-upsuser mailing list.

2. For a discussion of how to send notifications to all running X-server users, see https://
unix.stackexchange.com/questions/2881/show-a-notification-across-all-running-x-displays

3. The Gnome “Desktop Notifications Specification” is still a very long way from being RFC
quality.

These techniques have been tested with the Xfce desktop environment on openSUSE and Debian.
The editor would be pleased to hear of any successful adoption of the techniques on Fedora, RedHat
or Ubuntu based systems, using other desktop environments such as Cinnamon, KDE or Gnome.

Page 88 of 88

https://lists.alioth.debian.org/pipermail/nut-upsuser/2017-June/010729.html
https://lists.alioth.debian.org/pipermail/nut-upsuser/2017-June/010729.html
https://unix.stackexchange.com/questions/2881/show-a-notification-across-all-running-x-displays
https://unix.stackexchange.com/questions/2881/show-a-notification-across-all-running-x-displays
https://developer.gnome.org/notification-spec/

	Introduction, and Welcome to NUT
	What is NUT?
	Why this introduction?
	Basic components of NUT
	Driver daemon
	Daemon upsd
	Daemon upsmon
	Utility program upsc

	Configuration file formats
	Line spanning

	Mailing list: nut-users

	Simple server with no local users
	Configuration file ups.conf, first attempt
	Configuration file upsd.conf
	Configuration file upsd.users
	Configuration file upsmon.conf for a simple server
	The delayed UPS shutdown
	The shutdown story for a simple server
	Configuration file ups.conf for a simple server, improved
	The shutdown story with quick power return
	Utility program upscmd
	Utility program upsrw

	Server with multiple power supplies
	Configuration file ups.conf for multiple power supplies
	Configuration file upsmon.conf for multiple power supplies
	Shutdown conditions for multiple power supplies

	Workstation with local users
	Configuration file upsmon.conf for a workstation
	Configuration file upssched.conf for a workstation
	Configuration script upssched-cmd for a workstation
	The shutdown story for a workstation

	Workstations share a UPS
	Configuration file upsmon.conf for a slave
	Configuration file upssched.conf for a slave
	Configuration script upssched-cmd for a slave
	Magic: How does the master shut down the slaves?

	Workstation with heartbeat
	Configuration file ups.conf for workstation with heartbeat
	Configuration file heartbeat.dev for workstation
	Configuration file upsmon.conf for workstation with heartbeat
	Configuration file upssched.conf for workstation with heartbeat
	Script upssched-cmd for workstation with heartbeat
	For paranoïd sysadmins

	Workstation with timed shutdown
	Configuration file ups.conf for workstation with timed shutdown
	Configuration file heartbeat.dev for workstation with timed shutdown
	Configuration file upsd.conf with timed shutdown
	Configuration file upsd.users with timed shutdown
	Configuration file upsmon.conf with timed shutdown
	Configuration file upssched.conf with timed shutdown
	Script upssched-cmd for workstation with timed shutdown
	The timed shutdown

	The timed shutdown story

	Workstation with additional equipment
	Configuration files nut.conf
	Configuration files ups.conf and heartbeat.dev
	Configuration files upsd.conf
	Configuration files upsd.users
	Configuration file upsmon.conf
	Configuration file upssched.conf for mgmt
	UPS-3 on gold
	UPS-2 on gold
	UPS-1 on mgmt
	heartbeat on mgmt

	User script upssched-cmd
	The shutdown story

	Encrypted connections
	Waiting for NUT release 2.7.5
	Warning for Debian users
	Introduction
	Sniffing port 3493
	Creating the SSL keys with OpenSSL
	Create unique name for certificate using OpenSSL

	Install NUT server keys on gold
	Install NUT management client keys on mgmt
	Testing the TLS setup
	What can Debian users do?
	Debian: Create NSS database on gold
	Debian: Add OpenSSL keys and certificates to NSS database on gold
	Debian: Check and display NSS database on gold
	Debian: Create NSS database on mgmt
	Debian: Testing the NSS setup

	Acknowledgments
	Errors, omissions, obscurities, confusions, typpos...
	Starting NUT
	Stopping NUT
	Delayed UPS shutdown with NUT script
	Delayed UPS shutdown with a systemd service unit

	Using notify-send
	What's wrong with notify-send?
	Give user ``upsd'' (``nut'') the right to act as any user
	Search for and notify logged in users
	Testing the notify-send-all setup
	References for notify-send

